

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation

HIGH HEAT FLUX MATERIALS: STATUS AND PERSPECTIVES

M. Rieth, J. Linke, Ch. Linsmeier

INSTITUTE FOR MATERIALS RESEARCH

Outline

- Introduction: High Heat Flux Materials
- (I) First Wall Armour Materials
 - Self-passivating alloys
- (II) Divertor Armour Materials
 - o Thermal shock & He beam load
- (III) Structural Divertor Materials
 - Design & fabrication
 - Critical properties
- Conclusions

2

Karlsruhe Institute of Technology (KIT) Campus Nord

Example: ITER Wall Loads

4

General Requirements for High Heat Flux Materials

- high thermal conductivity
- adequate mechanical properties
- high melting point
- low activation/transmutation/damage under neutron irradiation
- compatibility with plasma/coolant
- acceptable costs, (i.e. availability, applicable fabrication processes)

Selection of High Heat Flux **Materials for DEMO**

w

Tungsten

Institute for Materials Research I

3695

Tungsten

18 32

M. Rieth, J. Linke, Ch. Linsmeier – HIGH HEAT FLUX MATERIALS

W

Tungsten

6

Materials & Applications

7

Karlsruhe Institute of Technology (KIT) Campus Nord

PART I – FW Armour Materials: (A) Self passivating tungsten alloys

- Accidental loss of coolant: peak temperatures of first wall up to 1200 °C due to nuclear afterheat
- Additional air ingress: formation of highly volatile WO₃ (Re, Os)
 - Evaporation rate: order of 10 -100 kg/h at >1000°C in a reactor (1000 m² surface)
 → large fraction of radioactive WO₃ may leave hot vessel

Temperature profile in PPCS Model A, 10 days after accident with a total loss of all coolant.

[Final Report of the European Fusion Power Plant Conceptual Study, 2004]

Self-passivating tungsten based alloys

Accidental conditions:

(air ingress, up to 1200 °C)

Formation of protective barrier

Surface composition automatically adjusts to the requested property

<u>Normal operation (600°C):</u> Formation of tungsten surface by depletion of alloying element(s) due to preferential sputtering

layer

Self-passivating tungsten based alloys

Surface composition automatically adjusts to the requested property

Normal operation (600°C):

TRIDYN numerical simulation of sputter erosion of W-Si-Cr alloy (D ions, 30 eV, fluence 10¹⁸/cm²)

Accidental conditions:

Cross section of sputter deposited W-Si-Cr film after oxidation at 1000°C for 1h

F. Koch, IPP

Oxidation Test Results

Arrhenius plot of oxidation rates of tungsten and tungsten alloys

F. Koch, IPP

11

Karlsruhe Institute of Technology (KIT) Campus Nord

W-10Cr-10Si Bulk Material

FIB, EDX, and XRD analysis

M. Rieth, J. Linke, Ch. Linsmeier – HIGH HEAT FLUX MATERIALS

Karlsruhe Institute of Technology (KIT) Campus Nord

Powder Metallurgical Fabrication

Example: Microstructure of 90W-Cr-Si for the three MA processes after HIP

C. García-Rosales, CEIT

High densification possible (>97%) by powder metallurgical approach (Milling, HIP)

PART I – FW Armour Materials: (B) Tungsten Coating on Steel

Micro-Tomography

Karlsruhe Institute of Technology (KIT) Campus Nord

M. Rieth, J. Linke, Ch. Linsmeier – HIGH HEAT FLUX MATERIALS

VPS-W coating, steel matrix, W particles, pores

Blue:steelWhite:WYellow:pores in steel

A. Zivelonghi, IPP T. Weitkamp, ESRF

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

VPS-W interlayer: W particles, pores

White: Yellow:

W pores in steel

Micro-tomography: quantitative analysis of real 3D microstructure

> A. Zivelonghi, IPP T. Weitkamp, ESRF

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Coatings and scales from organic[®] electrolytes (lonic Liquids)

W on Eurofer

Tungsten layer on Eurofer steel

- Deposited at 120 °C
- Electrolyte (IL) EMIN-CI + WCI₆

Karlsruhe Institute of Technology (KIT) Campus Nord

Max-Planck-Institut

für Plasmaphysik

PART I – FW Armour Materials: CONCLUSIONS

- Possible solutions for oxidation problem
- Alternatives coating process
- Fall-back options:
 - (1) plating(2) plasma controlling ⁽²⁾

NOT a pressing issue (compared to other topics)

PART II – Divertor Armour Materials

1

Testing with JUDITH (thermal shock) and GLADIS (H, He beam)

5

- 1. electron beam (EB) gun (200 kW)
- 2. vacuum chamber
- 3. cooling circuit (RT & 100 °C)
- 4. test component
- 5. diagnostics
- 6. carrier system

Th. Loewenhoff,

7. alternative flange for the EB-gun

5

(3)

Power: 2 x max. 1.1 MW Heat load: 1 - 50 MW/m² Pulse length: 10 ms - 30 s Repetition rate: ~ 100 /h

FZJ

Thermal Shock Tests Investigated Tungsten Grades

G. Pintsuk et al., FZJ, 2010

Material	ID-No.	process	composition	deformation	treatment	dimensions	comments
pure W	M182	sintering	> 99.97 %	hammering	2 h @ 1000°C	Ø = 12	rods
pure W	M184	sintering	> 99.97 %	hammering	2 h @ 1000°C	Ø = 12	rods
pure W	M196	sintering	> 99.97 %	uniaxial forging	2 h @ 1000°C	Ø = 170 d = 30	not tested
W-UHP	M192	sintering	> 99.9999 %	uniaxial forging	2 h @ 1000°C	Ø = 170 d = 30	
WVMW	M188	vacuum metallizing	W 15 - 40 ppm K	hammering	2 h @ 1000°C	Ø = 15	rods
WVMW	M193	vacuum metallizing	W 15 - 40 ppm K	uniaxial forging	2 h @ 1000°C	Ø = 170 d = 30	
double forged W	M190	sintering	> 99.97 %	double forging	2 h @ 1000°C	Ø = 144 d = 45	
WTa1	M194	sintering	W 1.0 % Ta	uniaxial forging	2 h @ 1000°C	Ø = 170 d = 30	
WTa5	M195	sintering	W 5.0 % Ta	uniaxial forging	2 h @ 1000°C	Ø = 170 d = 30	

21

Karlsruhe Institute of Technology (KIT) Campus Nord

M. Rieth, J. Linke, Ch. Linsmeier - HIGH HEAT FLUX MATERIALS

Karlsruhe Institute of Technology (KIT) Campus Nord

Morphology is dominated by physical sputtering. The erosion patterns depend on the local orientation of each individual grain. Strong surface modification occurs.

Similar results for PM-W and VPS-W in the temperature range 200 – 850°C. Cone and wave structures after high He fluence.

H. Greuner, IPP

Pure He loading PM-W components, Surface Temp. > 2000°C

top view

FIB cross section

Surface morphology of PM-W and W-VPS is dominated by a porous structure due to agglomeration of He bubbles. The coral-like structure has a typical thickness of ~2-3 μ m.

Note: 0.07 µm calculated He implantation depth only!

H. Greuner, IPP

Influence of surface temperature (6) on erosion at high fluence: 1-10²⁵ He/m²

Tsurf=1450°C

Tsurf=200°C

Tsurf=1000°C

note: 70 nm penetration depth

calculated erosion: 5 µm

H. Greuner, IPP

Low temperature: no bubble formation Surf. Temp. ≥ 1000°C: strong bubble formation dominates erosion pattern

PART II – Divertor Armour Materials: CONCLUSIONS

- Not many degrees of freedom in developing better performing materials
- Much more knowledge about irradiation effects and mechanisms necessary
- Fall-back options: NONE
 - → physics dominates material performance

This has a significant impact on the divertor design (possible operation limits)

Fiber-reinforced metal matrix composites

Heat sink applications

Heterogeneous W material

- enhanced high temperature strength
- high creep resistance
- increased fracture toughness

- controlled crack deflection
- internal energy dissipation
- increased strength by pseudo-ductility

Synchrotron tomography – Results

W_f/W-Single-fibre composite

- 11 tomography/displacement steps
- Diameter 1.006 mm, Notch depth 0.094 mm
- Maximum load 253 N; Measured displacement 0.1584 mm

M. Rieth, J. Linke, Ch. Linsmeier – HIGH HEAT FLUX MATERIALS

Karlsruhe Institute of Technology (KIT) Campus Nord

SiC_f / Cu: Voids in matrix

SiC_f / Cu (20% fibers)

→ ESRF ID-15A: ≤2 µm/pixel, 10 s / scan

3D view of the voids in the Cu matrix

M. Rieth, J. Linke, Ch. Linsmeier – HIGH HEAT FLUX MATERIALS

Karlsruhe Institute of Technology (KIT) Campus Nord

Synthesis Problem: Porosity

Deposition 1: Porosity 20%; Interface WO_x; Uniform coating of all fibres (≈50 µm);

Deposition 2: Porosity 14%; Interface Er₂O₃; Strong gradient in deposition thickness

Deposition 3: "Moving Heater" – Concept; Interface Er₂O₃ Porosity 8%; fibre pattern not maintained

J. Riesch, J.-H. You, IPP

Karlsruhe Institute of Technology (KIT) Campus Nord

PART III – Structural Materials for Divertor Applications

Divertor Concept up to 15 MW/m²

Karlsruhe Institute of Technology (KIT) Campus Nord

32

M. Rieth, J. Linke, Ch. Linsmeier - HIGH HEAT FLUX MATERIALS

Karlsruhe Institute of Technology (KIT) Campus Nord

34

Conclusion for ALL Helium Cooled Divertor Concepts

The main divertor part is a pipe-like structure (with open or closed ends) with different cross-sections (rectangular or round) on which the armour can be attached.

Tungsten Material Production Routes

36

Max-Planck-Institut für Plasmaphysik

ÜLICH

Half-finished Products

Rolling (or Swagging) of Rods

Microstructure Anisotropy

Rolling (or Swagging) of Rods

WL10 Rod, Ø7 mm

W Rod, Ø7 mm

Microstructure Anisotropy

Bundle of "Fibres" f "Fibres" ibres"

Karlsruhe Institute of Technology (KIT) Campus Nord

Rods: Fracture Characteristics

Delamination Fracture in Rods

Half-finished Products

Forging of Round Blanks

Microstructure Anisotropy

Plates: SEM / FIB channeling effect

Microstructure Anisotropy

Round Blanks

Karlsruhe Institute of Technology (KIT) Campus Nord

45

Delamination Fracture in Plates

1.5 mm

Karlsruhe Institute of Technology (KIT) Campus Nord

Powdermetallurgy

W-1.7TiC

- TEM observations:
- Bimodal grain size distribution:

mean sizes ≅ 40 and 146 nm

Bimodal particle size distribution:

mean sizes ≅ 4 and 40 nm

L. Veleva, N. Baluc, CRPP

47

Powdermetallurgy

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation JÜLICH FORSCHUNGSZENTRUM

W-V and W-V-La₂O₃ alloys

The plastic behaviour seems to appear at 1000 °C

The fracture toughness is a little smaller than for W-V alloys.
In this case the degradation due to oxidation is smaller than in W-V alloys

A. Muñoz, CIEMAT/UC3M/UPM

Karlsruhe Institute of Technology (KIT) Campus Nord

Powdermetallurgy W-0.5TiC

Significant enhancement of the low temperature ductility of ultra-fine grained (UFG) W–TiC requires sufficient plastic working after consolidation.

H. Kirushita, Tohoku Univ., 2009

W tile manufactured by PIM

Binary powder: 50wt% W1 (0.7 μm) + 50wt% W2 (1.7 μm) Feedstock mixing ratio powder/binder: 50/50 vol%

Final shape after heat-treatment* (sinter+HIP)

Material properties achieved: Vickers-hardness: 457HV0.1 Density: 98.6 – 99 % TD

*Heat-treatment:

- pre-sintering (1650°C, 2h, H_2) +
- HIP (1600°C, 3h, Ar, 250 MPa)

^{B2 5000 X 25HV/vr} Metallurgy results (Fig.:real microstructure of the W-tile): no porosity; grain size 5 μm

S. Antusch, KIT, 2010

Karlsruhe Institute of Technology (KIT) Campus Nord

Main Question for Structural Divertor Materials

How to fabricate pipe-like structures? Injection Moulding **Powdermetallurgy Mechanical Alloying** Plate Materials Sintering + Forming Rods

51

Pipe Fabrication of Rods

Pipe Impact Test

B. Dafferner, P. Norajitra, KIT

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Solution: Composite Materials?

J. Reiser, KIT

Sandwich of W-Foils

Fracture Behaviour

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Pipe Fabrication of Sandwich Material

PART III – Structural Div. Materials: CONCLUSIONS

- No material available which fulfills all design criteria (strength, heat conductivity, DBTT)
- No DEMO divertor concept ready which is feasible with existing materials
- Lower operating temperature about 800°C (due to irradiation → has to be confirmed)
- Upper operating temperature limit given by loss of strength or recrystallization (depends strongly on material, about 1000-1300°C)
- Water cooling as fall-back option not confirmed yet (many doubts!)

This topic has a critical impact on the DEMO design

Thank you for your interest!

Whenever you see this, remember that tungsten rods are not an option!

Thanks to all contributors to the following R&D programmes:

- EFDA Topical Group on Fusion Materials
- ExtreMat
- FEMAS-CA