

Modelling of brittle destruction of ITER armour under repetitive loads

S. Pestchanyi

Karlsruhe Institute of Technology

with contributions from J. Linke, V. Safronov, B. Bazylev, JUDITH Team, QSPA-Kh50 Team

EFDA WP10-PWI-07-02-01/KIT/BS

Outline

- simulations for ITER divertor erosion with transients in FZK - KIT

- overview of PEGASUS-3D results and verifications

- last results on W cracking simulations
- conclusions and open questions

S. Pestchanyi

ITPA SOL/DIV Meeting 18-21 Oct 2010 Seoul KIT - Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Simulation of tokamaks armour erosion in KIT

PHEMOBRID

Simulates erosion :

PEGASUS-3D

Simulates:

physics of brittle destruction

- effective heat conductivity
- dust production
- CPU time consuming code

using effective heat conductivity and brittle destruction threshold

- fast calculations
- simple and robust

MEMOS Simulates:

- metal melting and vaporization
- melt splashing

Pegasus-3D code

- Simulates cracking of solids under fast heat loads
- Creates numerical sample, which simulates graphite or CFC structure (random grains, fibres, up to 300×300×300 cells)
- Simulates:
 - Heating and heat conductivity in the sample
 - Calculates thermostress
 - Cracks formation and propagation
 - Dust particles splitting
- Calculates the dust particles number and the size statistics

CFC erosion optimisation

- New fiber structure for CFC has been proposed, (Fus. Eng. Des. 81 (2006) 275–279)
 - Experimental verification for theoretical predictions (MK-200UG experiment)
- The patent has been issued

Thermal conductivity of NB31 CFC

ITPA SOL/DIV Meeting 18-21 Oct 2010 Seoul

S. Pestchanyi, Karlsruhe Institute of Technology (KIT), IHM.

CFC erosion

Comparison of experimental and modeling results

PHEMOBRID simulations simpler but faster

PAN-fiber erosion increase from 0.01 µm/pulse to 10 µm/pulse in the heat load range of 0.2-2.4MJ/m²

Simulation of W cracking with PEGASUS-3D code

PEGASUS modelling for W cracks due to large ELMs (surface melting)

Fus. Eng. Des. 82 (2007) 1657-1663

ITPA SOL/DIV Meeting 18-21 Oct 2010 Seoul

Fractal crack pattern due to the stress relaxation

$$2L = \frac{F^2(1 - \sigma^2)}{\pi\mu E}$$

$$F_1 = E\alpha\Delta T$$

$$F_2 = E\left[\alpha\Delta T - d_{cr}^1/\Lambda_1\right]$$

$$F_3 = E\left[\alpha\Delta T - d_{cr}^1/\Lambda_1 - d_{cr}^2/\Lambda_2\right]$$

$$\prod_{lmm_1}$$

Tensile thermostress F in the resolidified layer is applied to the crack on W surface $(d_{cr} \ll L)$

The thermostress relieves due to the crack

W surface (QSPA, 100 shots of 0.9 MJ/m², Primary cracks: $L_1 \sim 500 \ \mu m$, $\Lambda_1 \sim 1-2 \ mm$ Secondary cracks: $L_2 \sim 50 \ \mu m$, $\Lambda_2 \sim 200-300 \ \mu m$

W surface, QSPA, 100 shots of 1.6 MJ/m², Tertiary cracks: Λ_3 <40 µm

40µm

Crack depth to mesh size ratio

Analytic solution for the stress:

- External tensile force *F* is applied to the W surface of a halfspace z>0 in the interval $-L \le x \le L$
- The stress tensor σ_{ik} , $i,k \in x,z$ depends on x/L and z/L only
- The ratio of the mean crack size at the surface to the crack depth is constant

ITPA SOL/DIV Meeting 18-21 Oct 2010 Seoul

Simulation of stress on W surface in QSPA Kh-50 plasma gun

$$\begin{split} & E_{i} \sim 0.4 \text{ keV}, \\ & P_{max} = 3.2 \text{ bar}; P_{average} \sim 1.6 \text{ bar} \\ & n = (2\text{-}7) \ 10^{15} \text{ cm}^{-3} \\ & \text{Plasma stream diameter } 18 \text{ cm}. \\ & \text{Pulse duration } 0.25 \text{ ms} \\ & Q_{1} = 0.45 \text{ MJ/m}^{2}; \ Q_{2} = 0.75 \text{ MJ/m}^{2}; \end{split}$$

Simulation of cracks on W target due to small ELMs

- Tungsten cracking under action of the small ELMs is due to plastic deformations
- A cellular crack network with the characteristic size A formed at the surface after first ELMs and the crack network does not change further.
- The average crack width Δ saturates value Δ_m
- $\Delta_m/\Lambda \le 2.2\%$ is equal to the tungsten linear expansion at the maximum surface temperature.
- The crack width tends to Δ_m exponentially with the ELMs number
- The accurate tensile strength and yield stress values are of no matter for the average cracks width and for the average mesh size

doi:10.1016/j.fusengdes.2010.05.005

Measurement of the threshold power load for W cracking

Residual stress in MPa measured at the sample surface after 1, 5 and 10 shots in QSPA-Kh50

T, °C Q, MJ/m ²	200			4	00	600	
	1	5	10	1	5	1	5
0.75	386	362	183	294	268	303	195
0.45	314	240	200	230	240	230	240
0.2	160	120		180	160	149	160

Mean crack width in μ m for large cracks of ~200-300 μ m mean crack depth and ~1 mm mean crack mesh size.

Т, °С		200	400		600		
No of pulses	1	5	10	1	5	1	5
0.75 MJ/m ²	X	2-4	4-8	X	X	X	X
0.45 MJ/m ²	X	0,5-1,5	1-3	X	X	X	X
0.2 MJ/m ²	Χ	X	X	X	Χ	X	X

Mean crack width in μ m for shallow cracks of ~5-10 μ m mean crack depth and ~30-50 μ m mean crack mesh size at the target surface.

Т, °С	200			400		600	
No of pulses	1	5	10	1	5	1	5
0.75 MJ/m ²	X	0.2-0.4	0.3-0.5		0.3-0.5	0.4-0.6	~1
0.45 MJ/m ²	X	X	X	X	X	X	X
0.2 MJ/m ²	X	X	X	X	X	X	X

Estimations for the threshold power load

- Energy density threshold for tungsten cracking with ELMs of 0.25 ms is measured as 0.3 MJ/m²
- Small ELMs produce compressive stress \Rightarrow plastic deformations
- Tensile stress developed in the plastically compressed surface during cooling down after ELM
- Analytical considerations predicts the threshold of ≥0.1 MJ/m² when the number of ELMs increases
- Dust produced during cracking

ITPA SOL/DIV Meeting 18-21 Oct 2010 Seoul

Conclusions for ITER divertor erosion

- Divertor armour erosion with disruption is negligible for both CFC (48 μm) and W (≤1 μm) even for 100% energy deposition (shielding)
- W melt splashing is tolerable (melt depth 60-80 μm x 200-300 disruptions, crater 5 μm)
 - Disruption mitigation needed only because of the first wall damage with RE and direct plasma heating
 - Direction of disruptive flux to divertor is better than the first wall damage (!)
- For large type I ELMs and CFC armour the divertor erosion is intolerable
 - Erosion ~1 μ m/ELM \Rightarrow armour lifetime is few hundred ITER shots
 - ELMs should be mitigated, but the efficiency is still unknown
 - CFC armour survives 10⁶ ELMs if Q<0.2 MJ/m² (for 0.5 ms ELMs)
- For W armour
 - Erosion (vaporization+splashing) with ELMs is tolerable
 - Growth of the cracks saturates
 - ELMs produce W dust (main danger) \Rightarrow contamination source ~10²⁰ at/m²
 - Even very small ELMs of ~0.1 MJ/m² can cause cracking and produce dust

Thank you for your attention