

Laser structuring and annealing of thin film electrodes for lithium-ion batteries

<u>J. Pröll¹</u>, R. Kohler¹, C. Adelhelm¹, C. Ziebert¹, M. Rinke¹, M. Bruns², S. Heißler³, M. Przybylski⁴, W. Pfleging¹

Institute for Materials Research (IMF-I¹, IMF-III²), Institute of Functional Interfaces (IFG ³), ATL Lasertechnik GmbH ⁴

27.10.2010, 3rd International Symposium on Laser-Micromachining, Chemnitz

www.kit.edu

outline

- motivation and technical approach
- advanced materials for lithium-ion batteries
- laser structuring of thin films
- LiCoO₂ and Li-Mn-O as cathode materials
- SnO₂ as anode material
- summary and outlook

motivation

stationary power energy density systems cathode ability to store energy less capacity than material dependent anode materials den OSE. (graphite 378 Ah/kg) enerol LiCoO₂ (140 Ah/kg) Li-Mn-O system (150-280 Ah/kg) etv HEV, EV 0 anode electrolyte cathode power density quick power supply Ø safety high Li⁺-diffusion rate Jowog \rightarrow enhancement of active surface

advanced materials for lithium-ion batteries

cathode

lithium manganese oxides (intercalation compounds)

- cheaper
- less toxicity
- availability of resources
- higher capacities (148-280 Ah/kg)

...than LiCoO₂ (140 Ah/kg)

electrolyte

LVSO (solid state electrolyte)

- for high thermal stability
- less decomposition in the high voltage region
- higher safety issues

... than standard electrolyte

anode

SnO₂ (conversion material)

higher specific capacities (reversible 790 Ah/kg)

...than graphite (378 Ah/kg)

future work:

combination of Li-Mn-O and Li-Ni-O intercalation compounds

- \rightarrow increased specific capacity
- \rightarrow improved stability in the high voltage region
- \rightarrow structure stability

why to focus on quasi-binary systems like Li-Ni-Mn-O?

laser structuring of electrode thin films

crystal structures of LiCoO₂ (cathode)

→ differences of both phases in cation ordering within the same oxygen sub-lattice

27.10.2010, 3rd International Symposium on Laser-Micromachining, Chemnitz

laser annealing of LiCoO₂ thin films

27.10.2010, 3rd International Symposium on Laser-Micromachining, Chemnitz

influence of laser structuring and annealing time on crystallinity, topography and lattice orientation of LiCoO₂

crystalline texture, topography and lattice orientation $(006)_{hex}$

- → HT-LiCoO₂ (006)_{hex} obtained via annealing
- → thermally induced lattice orientation favorably for Li⁺ diffusion in structured LiCoO₂ thin film

27.10.2010, 3rd International Symposium on Laser-Micromachining, Chemnitz

battery performance of unstructured and structured LiCoO₂ thin films under different current rates

"Swagelok" test cell

 → advanced capacity retention and cycle stability via laser structuring
→ increase of power density especially at high charging/discharging currents

crystal structures of lithium manganese oxides (cathode)

 $\bigcirc M$

layered structure

- Li*M*O₂ (*M* = Ni, Co, Mn)
- $LiCo_{0,33}Ni_{0,33}Mn_{0,33}O_2$

→ 2D host structure for Li⁺ diffusion

spinel structure

- LiMn₂O₄ (cubic)
- Li₂Mn₂O₄ (tetragonal)

→ 3D host structure for Li⁺ diffusion

o-LiMnO₂ (layered)

- 285 mAhg⁻¹ (theoretical)
- ~150 mAhg⁻¹ (practical)
- changes into spinel structure (Li⁺ extraction >50%, U=3 to 4V)

LiMn₂O₄ (spinel)

- 148 mAhg⁻¹ (theoretical)
- ~60-120 mAhg⁻¹ (practical)
- 0<x<1, cubic structure
- 1<x<2, tetragonal structure (Jahn - Teller distortion)
- Mn³⁺ occupation reaches critical 50%
- lowering of global symmetry

crystal structures of lithium manganese oxides (cathode)

Mn⁴⁺O₆

o-LiMnO₂ (layered)

- 285 mAhg⁻¹ (theoretical)
- ~150 mAhg⁻¹ (practical)
- changes into spinel structure (Li⁺ extraction >50%, U=3 to 4V)

LiMn₂O₄ (spinel)

basics of SnO₂ as anode material

- during first charging cycle a Li₂O matrix is formed which compensates partly the huge volume change (up to 359%) of Sn
- reaction equation:

$$1 \operatorname{SnO}_2 + 4\operatorname{Li}^+ + 4 \operatorname{e}^- \longrightarrow 2\operatorname{Li}_2 O + \operatorname{Sn}^-$$

2 Sn + x Li⁺ + x e⁻ \longleftrightarrow Li_xSn

irreversible 4 Li/Sn ~700 mAh/g reversible 4.4 Li/Sn ~800 mAh/g

summary and outlook

- r.f. magnetron sputtering was proved to be a powerful tool for deposition of LiCoO₂, Li-Mn-O and SnO₂ thin films on stainless steel and silicon substrates
- laser-induced formation of micro structures with high aspect ratios on thin films for enhancement of power density
- investigation of laser-annealing processes for adjustment of crystallinity and battery phases of LiCoO₂ and Li-Mn-O thin films
- evidence for desired battery phases through Raman and XRD analysis
- improvement of battery performance via laser modification of anodes and cathodes
- characterization of "solid electrolyte interface" (SEI) on LiMn₂O₄
- further improvement of structuring processes (higher aspect ratios, sub-micron structures)
- further investigation of SEI on unstructured and structured anode/cathode materials