

Cost effective fabrication of a fail-safe first wall

M. Rieth, B. Dafferner, S. Baumgärtner, S. Dichiser, T. Fabry, S. Fischer, W. Hildebrand, O. Palussek, H. Ritz, A. Sponda, R. Ziegler, H. Zimmermann

INSTITUTE FOR MATERIALS RESEARCH

Outline

Introduction

Basic Diffusion Weld Studies

- Surface Processing
- Surface Contamination
- **o HT Creep under Pressure**
- Problem Analysis
- Possible Solutions & Recommendations
 Conclusions

First Wall Fabrication: How ...?

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Fabrication/Production Criteria

Compatibility with industrial environment

- Applicability of standard fabrication processes \rightarrow mass fabrication
- Robustness against environmental influences (corrosion, rough handling, storage, ...)
- Tolerant against scattering of process parameters

Efficiency

- Costs
- Recources

Safety/Reliability

- Dimensional Accuracy
- Easy Quality Assurance
- Reproducibility

General Fabrication Routes

Casting	 In principle, the complete U-bended FW could be fabricated. Draw-backs: The impurity levels of the Eurofer alloy would be increased (higher activation!) and voids/bubbles cannot be excluded.
Machining	 The only possible way would be ECM, EDM, or broaching. But there is a strict limitation of the channel length. Draw-backs: It is difficult to fabricate the required initial holes (further length restrictions!?).
Powder Metallurgy	 Route: (1) Powder compaction, (2) encapsulation, (3) HIP (A) embedding of U-bended tubes (B) embedding of straight removable rods/tubes followed by bending the FW
Solid State Welding	

Assessment of Fabrication Routes

Casting	 NOT tested yet! Relatively expensive due to complicated mold and filler fabrication as well as filler removal Material degradations are likely
Machining	 No solution available yet → Development of suitable ECM or other process necessary! Therefore, EXPENSIVE NO mass production
Powder Metallurgy	 Established in industry Extensive encapsulation for embedded tubes necessary Severe material degradation: EMBRITTLEMENT!

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Solid State Welding

Diffusion Welding (1st step: low pressure with closed channels)

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

(1) Diffusion Welding: HIP & Plates

Standard casing sheet material (e.g. SS 304) with vacuum tight TIG welds and vents for evacuation

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

(2) Diffusion Welding: Self-Encapsulation pressure from all directions closed cooling channels circumferential EB weld, evacuation automatically by EB welding chamber

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Basic Studies

10 M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Basic Studies: Surface Fabrication

Diffusion Weld Samples and Charpy Specimen Fabrication

25 MPa, 1050 °C, 2 h

7 different surfaces fabricated with different tools

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Surface Fabrication: Test Results

Surfaces 8, 10, and 12 lead to worse properties compared to the base material!

12 M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Surface Fabrication: Microstructure

Metallography of Diffusion Weld Lines

14 M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Basic Studies

Surface Contamination Study		
Surface 20:	Reference fabrication (dry milling with optimised parameters and immediate sealing by EB-welding)	
Surface 21-24:	1, 2, 3, 14 days at 70% relative humidity before sealing	
Surface 25:	Surface protection with oil, 14 days at 70% relative humidity, cleaning with isopropanol before sealing	
Surface 26:	Surface protection with oil, 14 days at 70% relative humidity, cleaning with soap before sealing	
Surface 28:	Surface fabrication with optimised parameters, but milling with industrial standard coolant, just dried before sealing	
Surface 29:	Same as Surface 28, but cleaning with isopropanol before sealing	

Basic Studies: Surface Contamination

Basic Studies: Surface Contamination

17 M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Surface Contamination: Microstructure

The micrographs of all weld interfaces show no weld line. That is, from a micro-structural point of view, the diffusion welds (performed at 1150 °C, under 25 MPa, for 2 hours) are all perfect, regardless of the fabrication history. (The Charpy test results, however, demonstrate that there are small differences, anyway.)

Know-how transfer to mock-up fabrication: Theory

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Know-how transfer to mock-up fabrication: Reality

- Long periods between surface fabrication (dry milling) and EB welding (vacuum sealing) → 7 days
- 2. Minimum available HIP pressure to high \rightarrow 10 MPa instead of 7 MPa

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Effects of Hight Temperature Creep: Dimensional Inaccuracies

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Effects of Hight Temperature Creep: Material Flow

14 MPa

19 MPa

M. Rieth, B. Dafferner, *et al.* – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Better Results with Lower Aspect Ratio

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Problem Analysis

- Increase tolerance of surface conditions
- Improvement of weld properties (esp.: fracture toughness)
- → HIGH TEMPERATURE + HIGH PRESSURE
- Better shape stability, dimensional accuracy
 → LOW TEMPERATURE + LOW PRESSURE

State of the Art FW Fabrication Methods

- 1. Fabrication of flat FW plates with internal cooling channels by different methods:
 - CEA: closing of channels by EB, then HIP
 - CEA: rectangular tubes between two plates
 - CEA: tubes forming and HIP between two grooved plates
 - KIT: variable temperature and pressure by HIP or UP
- 2. Bending of the plates

Pros and cons are well known

Two additional methods with high accuracy and tolerance against process variations

Stabilization of Cooling Channels with Inlets of Stainless Steel

Standard fabrication of the channel structure

Dry milling of the diffusion weld surfaces

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Cooling Channels with Stainless Steel Inlets

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

High Pressure HIP with Stabilized Channels

Before and after High Temperature – High Pressure HIP

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Stabilization of Cooling Channels

No Creep Deformation

High Accuracy of the cooling channel cross-section (after removal of stabilizers)

30 M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Fail-safe First Wall Fabrication

Fabrication Processes:

Bending of 2 plates
 Milling of grooves into the plates
 Fabrication and bending of pipes
 Assembling plates and pipes
 Sealing with EB welds
 High temperature - high pressure HIP

Step 1: Bending of two plates

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Step 2: Milling of grooves

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Step 3: Fabrication and bending of pipes

Commercial fabrication processes available:

- Pipe production by TIG or Laser welding.
- Bending with given dimensions
- Necessary half-finished product: steel stripes (e.g. 1mm x 40mm x 100m)

Edelstahlrohre auf höchstem Niveau

Wuppermann fertigt auf modernen, leistungsfähigen Anlagen Edelstahlrohre mit besten Oberflächen als Basis für hochwertige Komponenten.

Step 4: Assembling plates and pipes

After storage of several days without special cleaning treatment

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Step 5: Sealing with EB welds Step 6: HIP (1050°C, 100MPa, 2h)

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Microstructure near the weld surfaces

M. Rieth, B. Dafferner, et al. – Cost effective fabrication of a fail-safe first wall
 First Joint ITER-IAEA Technical Meeting on "Analysis of ITER Materials and Technologies", 23-25 Nov. 2010

Conclusions: Which criteria are fulfilled?

Compatibility with industrial environment

- Applicability of standard fabrication processes
- Robustness against environmental influences (corrosion, rough handling, storage,
- Tolerant against scattering of process parameters

Efficiency

- Costs
 - Recources

Safety/Reliability

- 💻 Dimensional Accuracy 🗸
- Easy Quality Assurance
- 🔳 Reproducibility √
- Inherent Fail-safe Design

