

Fracture behavior of tungsten materials and the impact on the divertor design in nuclear fusion power plants

M. Rieth, A. Hoffmann, J. Reiser, D.E.J. Armstrong

INSTITUTE FOR MATERIALS RESEARCH

Components and Applications

2

He-cooled Divertor Concepts

Current Case Study: Possible heat flux up to 15 MW/m²

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Divertor Concepts, 5-10 MW/m²

Divertor Concepts, 5 MW/m²

Divertor Concepts, 10 MW/m² Karlsruher Institut für Technolo **Foam in Tube** Section A-A W-Foam **Heated** Foam Surface W-Foam Helium (22) 11.50 5.90 OUT 16 50 64 3

→ S. Sharafat *et al.*, 2005-2009

Conclusion for ALL Helium Cooled Divertor Concepts

The main divertor part is a pipe-like structure (with open or closed ends) with different cross-sections (rectangular or round) on which the armour can be attached.

Main Question for Structural Divertor Materials

How to fabricate pipe-like structures? Injection Moulding Powdermetallurgy Mechanical Alloying

Sintering + Forming Rods

Rolling (or Swagging) of Rods

Microstructure Anisotropy

Rods

Bundle of "Fibres"

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Rods: Fracture Characteristics

Delamination Fracture in Rods

Half-finished Products

Forging of Round Blanks

Microstructure Anisotropy

Plates: SEM / FIB channeling effect

Microstructure Anisotropy

Stack of "Pancakes"

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Charpy Tests, Plate Materials

Delamination Fracture in Plates

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Pipe Fabrication of Rods

Pipe Impact Test

B. Dafferner, P. Norajitra, **KIT**

Solution: Composite Materials?

J. Reiser, KIT

Sandwich of W-Foils

200µm

Fracture Behaviour

Karlsruhe Institute of Technology (KIT) Campus Nord Institute for Materials Research I

Pipe Fabrication of Sandwich Material

CONCLUSIONS

- No material available which fulfills all design criteria (strength, heat conductivity, DBTT)
- No DEMO divertor concept ready which is feasible with existing materials
- Lower operating temperature about 800°C (due to irradiation → has to be confirmed)
- Upper operating temperature limit given by loss of strength or recrystallization (depends strongly on material, about 1000-1300°C)
- Water cooling as fall-back option not confirmed yet (many doubts!)

Thank you very much!

Whenever you see this, please remember that tungsten rods are not a good choice for pipe fabrication !

Thanks to all contributors to the EFDA Topical Group on Fusion Materials