

Detailed numerical investigations of two-phase flow and transport phenomena in narrow channels

Dr.-Ing. Martin Wörner

Institut für Kern- und Energietechnik

Opening Workshop Helmholtz Research School Energy-Related Catalysis

Karlsruhe Institute of Technology November 17, 2010

www.kit.edu

Introduction

- Multiphase micro reactors
- Interaction between flow, transport and reaction
- Numerical simulation method

- Hydrodynamics
- Mass transfer
- Chemical reaction
- Conclusions and outlook

Advantages of Taylor flow

- Good mixing of species within the bubble
- Large interfacial area per unit volume and thin liquid film between bubble and wall \Rightarrow efficient heat and mass transfer
- Axial segmentation of liquid \Rightarrow reduced axial dispersion
- Recirculation in liquid slug \Rightarrow good mixing in liquid slug and wall-normal convective transport in laminar flow

Channel cross section: 400 $\mu m \times 280 \ \mu m$

Movie of Günther et al. Langmuir **21** (2005) *1547-1555*

Introduction

- Multiphase micro reactors
- Interaction between flow, transport and reaction
- Numerical simulation method

- Hydrodynamics
- Mass transfer
- Chemical reaction

```
Conclusions and outlook
```

Hydrodynamics

Bubble velocity $U_{\rm B}$ is a priori unknown

- It depends on viscous, capillary, inertial and gravitational forces and is determined by the momentum equations of the two phases
- The thickness and velocity of the liquid film as well as the volumetric gas content \mathcal{E}_{G} are closely related to U_{B}

$$\frac{A_{\rm L}(y)}{A_{\rm ch}} = \frac{U_{\rm B} - J_{\rm tot}}{U_{\rm B} - U_{\rm L,film}(y)}$$

$$\varepsilon_{\rm G} \equiv \frac{V_{\rm G}}{V_{\rm G} + V_{\rm L}} = \frac{\dot{Q}_{\rm G}}{U_{\rm B}A_{\rm ch}}$$

Introduction

- Multiphase micro reactors
- Interaction between flow, transport and reaction

Numerical simulation method

Results

- Hydrodynamics
- Mass transfer
- Chemical reaction

Conclusions and outlook

Simulation method*

- **In-house computer code** *Öztaskin et al. Phys. Fluids **21** (2009) 042108
- Navier-Stokes equation in single field formulation with surface tension term for two incompressible immiscible Newtonian fluids with constant physical properties
- Volume-of-fluid method with piecewise linear interface reconstruction

Simulation method* (cont.)

- Solution of single-field concentration equation for an arbitrary number of chemical species
- No feedback of species on hydrodynamics (yet)

*Onea et al. Chem. Eng. Sci. 64 (2009) 1416-1435

17.11.2010

11

Institut für Kern- und Energietechnik

Introduction

- Multiphase micro reactors
- Interaction between flow, transport and reaction
- Numerical simulation method

- Hydrodynamics
- Mass transfer
- Chemical reaction
- Conclusions and outlook

Institut für Kern- und Energietechnik

Experimental validation*

Keskin et al. AIChE J. 56 (2010) 1693–1702

Introduction

- Multiphase micro reactors
- Interaction between flow, transport and reaction
- Numerical simulation method

- Hydrodynamics
- Mass transfer
- Chemical reaction
- Conclusions and outlook

17 17.11.2010 Dr. Martin Wörner

Institut für Kern- und Energietechnik

Mass transfer and chemical reaction

Without chemical reaction
Fast heterog. reaction (1st o.)

long bubbles are more efficient

Disparity of length scales

Scale of the smallest structures in the bulk phase

- Velocity field: Kolmogorov micro-scale
- Concentration field: Batchelor scale

 $\lambda_{\rm u} = \left(\nu^3 / \varepsilon\right)^{1/4}$ $\lambda_{\rm c} = \left(\nu D^2 / \varepsilon\right)^{1/4}$

$$\frac{7}{2}$$
 (Schmidt number)

Boundary layer thickness at the moving interface

- Velocity field:
- $\delta_{
 m u} \propto L$ / \sqrt{Re}
- Concentration field: $\delta_c \propto L / \sqrt{Pe} = L / \sqrt{ScRe}$

$$\frac{\delta_{\rm c}}{\delta_{\rm u}} \propto \frac{1}{\sqrt{Sc}}$$

Disparity of length scales (cont.)

Typical values of the Schmidt number

Gases Sc = O(1)

• Liquids Sc = O(1000)

$$\frac{\lambda_{\rm c}}{\lambda_{\rm u}} \approx \frac{\delta_{\rm c}}{\delta_{\rm u}} \approx \frac{1}{\sqrt{1000}} = \frac{1}{31.6}$$

- The smallest length scales in the concentration field are about a factor of 30 smaller than those in the velocity field
- The grid required for resolving all scales in the concentration field is 30 times finer than required for the velocity field (in 3D this corresponds to a factor of 30³ = 27 000)
- This makes numerical methods that use the same grid for the velocity and concentration field very inefficient ⇒ use of <u>hierarchical grids</u>, i.e. a finer grid for the concentration field than for the velocity field (ongoing PhD)

Conclusions

- High potential of Taylor flow for intensification of heterogeneously catalyzed gas-liquid processes in micro reactors
- Complicate interaction between two-phase flow, transport (heat and mass) and reaction
- Understanding and quantification of this non-linear interaction (which involves various length and time scales) is a key issue toward the design and optimization of multi-phase micro reactors
- Detailed numerical investigations provide a promising tool
- Current status of numerical methods
 - Hydrodynamics of two-phase flow including bubble and drop formation
 - Coalescence phenomena
 - Mass transfer (realistic Schmidt numbers)
 - Interfacial transport of soluble and insoluble surfactants
 - Coupling of two-phase flow and transport with detailed chemical kinetics

Outlook **Kinetics for FTS TURBIT-VOF** DETCHEM Coupling Detailed simulation of **Detailed chemical** two-phase flow and kinetics at channel transport within channel walls **Two-phase** processes in monolith reactors (e.g. Fischer-Tropsch synthesis)

Thanks

PhD students

- Winfried Sabisch (2000)
- Bradut Ghidersa (2004)
- Milica Ilić (2005)
- Alexandru Onea (2007)
- Carlos Falconi
- Erasmus students from Sakarya University (Turkey)
 - Furkan Özkan
 - Özge Keskin
 - Murat Öztaskin
 - Semih Kececi
 - Sercan Erdogan