

Strukturierte Oberflächen: Bindeglied zwischen Chemie, Physik und Biologie

H. Gliemann

Institute of Functional Interfaces, Karlsruhe Institut of Technology, 76021 Karlsruhe, Germany

www.kit.edu

Motivation

Motivation

Motivation

Oxidic Interfaces, Metal Interfaces, Polymers

Chemical Functionalization		Structuring
 Basis-SAMs (thiols, silanes) Coupling reactions and adsorption on interfaces 	Combination	 AFM-lithography (nm ←→ µm) Polymer-blend mask lithographie (nm ←→ µm) UV-lithographie (sub µm ←→ µm) Micro contact printing (sub µm ←→ µm) Magnet lithography (µm ←→ mm)

Chemical / Physical Surface Characterization

Focus:

- Development of a tool box to combine structuring techniques with chemical functionalization methods on different substrates
- Investigation of size-functionality correlation

Outlook

- 1. Structured Surfaces for Specific Cell Adhesion
 - Fibroblast adhesion on microstructured glass substrates
- 2. Selfassembling of Biological Nanotemplates on Structured Surfaces
 - Site selective assembling of tabacco mosaic viruses (TMV)
- 3. Substrate Supported Metal Organic Frameworks (SURMOF)
- 4. Electron Transport in Graphene-based Organic Monolayers

Outlook

- 1. Structured Surfaces for Specific Cell Adhesion
 - Fibroblast adhesion on microstructured glass substrates
- 2. Selfassembling of Biological Nanotemplates on Structured Surfaces
 - Site selective assembling of tabacco mosaic viruses (TMV)
- 3. Substrate Supported Metal Organic Frameworks (SURMOF)
- 4. Electron Transport in Graphene-based Organic Monolayers

Adhesion of Fibronectine to Integrine

Fibroblast Adhesion on Microstructured Glass Substrates

Challenges:

- avoid non-specific physisorption of RGD-peptide
- spacer between substrate and RGD-motif
- chemical bonding of the RGD-peptide to the substrate

Inanimate Surfaces Functionalised with Artificial RGD-Peptides

Murine Fibroblasts Show Similar Spreading Behavior on RGD-Peptides as on Fibronectin

Transfer of Surface Chemistry to Microstructures by Micro Contact Printing

Transfer of Surface Chemistry to Microstructures by Micro Contact Printing

Transfer of Surface Chemistry to Microstructures by Micro Contact Printing

TOF-SIMS Images of GRGDS-Peptide Coupling

Sample

4

Negative lons (C₇H₉NO₆)

TOF-SIMS Images of GRGDS-Peptide Coupling

Sample

4

Negative lons $(\overline{C_7H_9NO_6})$

R

Cell Adhesion on GRGDS-Peptide Functionalised Microstructures

Confocal laser scanning microscope images of fibroplasts on RGD-peptide functionalized surface structures

S. Kalinina, H. Gliemann, M.Lopez-Garcia, A. Petershans, J. Auernheimer, Th. Schimmel, M. Bruns, A. Schambony, H. Kessler, D. Wedlich, *Biomaterials* **29**, 3004 (2008)

Transfer of Surface Chemistry to the Nanoscale: Dip-pen Lithography

Transfer of Surface Chemistry to the Nanoscale: Dip-pen Lithography

5 µm x 5 µm

First result

5 µm x 5 µm

AFM friction contrast images of isothiocyanate-terminated RGD-peptide coupled to aminated surface by dip-pen lithography

S. Lenhert (INT), Th. Schimmel (INT), H. Gliemann

Transfer of Surface Chemistry to the Nanoscale: Immobilized Oxidic Nanoparticles as Reactive Sites

Transfer of Surface Chemistry to the Nanoscale: Immobilized Oxidic Nanoparticles as Reactive Sites

AFM image (topography) of allophanes on mica

S. Kalinina, H. Gliemann, M. López-García, A. Petershans, J. Auernheimer, Th. Schimmel, M. Bruns, A. Schambony, H. Kessler, D. Wedlich, *Biomaterials* 29 (2008) 3004

S. Kaufhold, A. Kaufhold, R. Jahn, S. Brito, R. Dohrmann, R. Hoffmann, H. Gliemann, P.-G. Weidler, M. Frechen, *Clays and Clay Min*erals 57 (2009) 72-81

Transfer of Surface Chemistry to the Nanoscale: Immobilized Oxidic Nanoparticles as Reactive Sites

Transfer to nm-scale

S. Kalinina, H. Gliemann, M. López-García, A. Petershans, J. Auernheimer, Th. Schimmel, M. Bruns, A. Schambony, H. Kessler, D. Wedlich, *Biomaterials* 29 (2008) 3004

Challange:

Equidistant immobilization of nanoparticles for surface functionalization and patterning

Marco Fuchs

Acknowledgements and Cooperation

- A. Petershans / Prof. Bräse Dr. S. Montero-Pancera
- A. Lyapin S. Reichlmaier

Prof. D. Wedlich Dr. S. Kalinina

Prof. H. Kessler Dr. M. Lopez

V. Trouillet M. Bruns

Prof. Th. Schimmel B. Riedel **Physical Eelectronics GmbH**

Zoological Institute KIT

Institute of Organic Chemistry TU of Munich

Institute of Material Science III KIT

Institute of Nanotechnology KIT

CFN (DFG) Prof. Bastmeyer

DAAD

- 1. Structured Surfaces for Specific Cell Adhesion
 - Fibroblast adhesion on microstructured glass substrates
- 2. Selfassembling of Biological Nanotemplates on Structured Surfaces
 - Site selective assembling of tabacco mosaic viruses (TMV)
- 3. Substrate Supported Metal Organic Frameworks (SURMOF)
- 4. Electron Transport in Graphene-Based Organic Monolayers

Viruses as Functional, Self-Assembling Building Blocks on the Nanometer Scale

http://www.elektroniknet.de/home/stromversorgung/stromversorgung-news/n/d/strom-aus-der-virusbatterie/

Strom aus der Virusbatterie

Eine Forschergruppe des MIT hat eine Mikrobatterie entwickelt, die nur halb so groß ist, wie eine menschliche Zelle und teilweise aus Viren aufgebaut wird.

Schluss mit 9-Volt-Batterien und Knopfzellen: Nach Meinung der Wissenschaftler aus dem Team um die beiden Professorinnen Paula Hammond und Angela Belcher vom Massachusetts Institute of Technology sind aus organischen Materialien aufgebaute Mikrobatterien die Energiequelle der Zukunft. Sie sollen einmal vor allem elektronische Mikrosysteme wie z.B. Labs-on-Chip oder implantierbare medizinische Sensoren mit Strom Zur Herstellung der Komponenten der Mikrobatterie setzen die Forscher ein Mikro-Kontakt-Stempel-Verfahren ein. Bei diesem Prozess werden molekulare Strukturen über einen Kunststoff-Stempel auf eine Oberfläche aufgedrückt. »Wir sind die ersten, die diese Methode zur Herstellung von Mikrobatterien einsetzen und auch die ersten, die Viren benutzen, um eine solche Batterie zu bauen«, erklären die beiden MIT-Professorinen in ihrem gerade publizierten Fachartikel.

versorgen.

Viruses as Functional, Self-Assembling Building Blocks on the Nanometer Scale

Hartmut Gliemann¹, Andre Petershans¹, Stefan Walheim², Thomas Schimmel², Alexander Bittner³, Michael Börsch⁴, ^{*} Joachim Spatz⁵, Anan Kadri⁶, Anna Müller⁶, Fania Geiger^{5/6}, Holger Jeske⁶, Christina Wege⁶ 1: Institut für Funktionelle Grenzflächen (IFG), Forschungszentrum Karlsruhe (FZK); ²: Institut für Angewandte Physik und

Centrum für Funktionelle Nanostrukturen (CFN), Universität Kalrsruhe; und Institut für Nanotechnologie (INT), FZK; ³: CIC NanoGUNE, San Sebastian, Spain; ⁴: Univ. Stuttgart, 3. Physikalisches Institut; ⁵: MPI für Metallforschung, Stuttgart; ⁸: Universität Stuttgart, Biologisches Institut.

TP A6 des Kompetenznetzes "Funktionelle Nanostrukturen" der Landesstiftung Baden-Württemberg

Künstliche Metalldrähte in natürlichen Viren

Stromlose Abscheidung von Kobalt (rot) im Palladium-belegten Innen-kanal (grau) des Virus (gelb): 3 Co²⁺ + 2 BH₃ + 6 OH⁻ \rightarrow 2 H₃BO₃ + 3 H₂ + 3 Co

nogune

Assembly Mechanism of Tabacco Mosaic Viruses

Bioaktive Nanosticks: Tabakmosaikvirus-(TMV-)-Derivate

TMV-basierte Nano-**Trägersticks für** verbesserte Microarrays **RNA 500x** TMV-CP + Funktion 1500xTMV-CP B

- Kontrolliert selbst-assemblierende TMV-Coatprotein-Typen: genetisch modifizierte Varianten → funktionale Enden
 - Synthetische Gerüst-RNA für Sticks und Bäumchen: einfache und komplexe Architekturen → Länge und Form
 - Wachstum auf chemisch definierten Oberflächenarealen: ortsselektive RNA-Bindung → lokale Assemblierung
- Mikro-/ nanostrukturierte Substrate für geordnete Muster:
- → kombinatorische Arrays, Integration in Technik-Umgebung
- "*Finishing*": → aufrechte, bioaktive Nanogerüste: metallorganische Stützschichten, Aktivierung der Funktion

RNA Coupling and TMV Assembly

Aldehyde coupling

RNA Coupling and TMV Assembly

Aldehyde-coupling

Surface structures by polymer blend lithography

AFM topography images of different states of self assembly of TMV on surface structures

5 µm x 5 µm

1,5 µm x 1,5 µm

C=O

Acknowledgements and Cooperation

Holger Jeske Christina Wege Anna Müller Fabian Eber Sabine Eiben Sigi Kober Diether Gotthardt	Universität Stuttgart, Abt. Molekularbiologie & Virologie der Pflanzen	Jörg Wrachtrup Michael Börsch Stephan Nußberger	Universität Stuttgart, Physik & Biophysik
		Michael Bruns Vanessa Trouillet	KIT, Institut für Material- Forschung III
Annika Allinger		Einancial Support	
			•
Andre Petershans	KII,	Baden-Württemberg Stiftung	
Carlos Azucena	Inst. für Funktionelle Grenzflächen	• DFG	
	Grenznachen	• CFN	
Thomas Schimmel	KIT,		
Stefan Walheim	Institut für		
Chen Huang	Nanotechnologie		
Matthias Barczewski			
Alexander Förste			

- 1. Structured Surfaces for Specific Cell Adhesion
 - Fibroblast adhesion on microstructured glass substrates
- 2. Selfassembling of Biological Nanotemplates on Structured Surfaces
 - Site selective assembling of tabacco mosaic viruses (TMV)
- 3. Substrate Supported Metal Organic Frameworks (SURMOF)
- 4. Electron Transport in Graphene-Based Organic Monolayers

Two Dimensional Porous Networks on Surfaces

STM image of BTS on Ag (111)

Self-assembled growth of 2d-networks on metal surfaces

J.V.Barth, *Molecular Architectonic on Metal Surfaces*, Ann. Rev.Phys.Chem. **58**, 375 (2007)

N.Lin, D.Payer, A.Dmitriev, T.Strunskus, Ch.Wöll, J.V.Barth, K.Kern, *Angew. Chemie Intern. Ed.* 44, 1488 (2005)

Nature Chemistry 2, 374, (2010)

Going From Two to Three Dimensional Porous Networks

Inorganic Units

Well devoloped field in coordination chemistry Several hundred structures known

Adjustable Metal Organic Framework (MOF) Pore Size

O. Yaghi et al., Micro- and Mesoporous Materials (2004)

Surface area > 2000 m²/g Temperature stability > 250°C Physical and chemical properties adjustable (e.g. molecular magnets, dyes,...)

Deposition of MOFs on Surfaces: The Straightforward Approach Grafting of preformed filtration MOF crystallites ٥ ٥ on surface 006 <u>7</u> 060 **Conventional MOF MOFs** synthesis filtrated 105 °C solution Robust method, but.... polycrystalline disordered no homogenous thickness 2µm S.Hermes, F.Schröder, R.Chelmowski, Ch.Wöll, R.A.Fischer, J.Am.Chem.Soc. 127,13744 (2005)

40 9.12.2010 • NanoVision 2010 • H. Gliemann

Connectivity of Framework Building Units: 2D vs. 3D

Epitaxial Growth of a Prototype MOF, HKUST-1

Conventional solvothermal synthesis of HKUST-I (Cu-BTC)

In-situ Monitoring of SURMOF Deposition with SPR

O.Shekhah, H.Wang, T.Strunskus, P.Cyganik, D.Zacher, R.A.Fischer, Ch.Wöll, Langmuir 23,7440 (2007)

Characterization of SURMOFs: XRD

Shekhah, Wang, Kowarik, Schreiber, Paulus, Tolan, Sternemann, Evers, Zacher, Fischer, Wöll, JACS 129, 15118, (2007)

MOFs which are suited for the LPE-method

Zn(bdc)(dabco) MOF

Zn(bdc)(bipy) MOF

HS (CH₂)₁₅COOH

HS (CH₂)₁₁OH

 $HSCH_2(C_6H_4)(C_5H_4N)$

Shekhah, Wang, Zacher, Fischer, Wöll, J. Am. Chem. Soc., 129 (2007)15118

Shekhah, Wang, Paradinas, Ocal, Schüpbach, Terfort, Zacher, Fischer, Wöll, Nature Materials 8 (2009) 481

Loading of SURMOFs with Ferrocene derivatives: QCM results for Cu-ndc-dabco

Loading of the Cu₂(bdc)₂(dabco) MOF with a luminiscent molecule, Eu(bzac)₃·bipy

In collaboration with Prof. Claudia Wickleder, Univ. Siegen

µCP: Xia, Whitesides, Annu. Rev. Mater. Sci., 28, 84 (1998)

Characterization of SURMOFs with SEM & AFM

C. Munuera, O. Shekhah, H. Wang, Ch. Wöll and C. Ocal; PCCP 10, 7257 (2008)

Acknowledgements and Cooperation

Topics

Fabrication of highly ordered molecular adlayers (SAMs) using organothiols

Metal-Organic Frameworks (MOFs)

Layer-by-Layer growth of MOFs on SAMs

Some applications SPR

Institute of Functional Interfaces (IFG), KIT

www.ifg.kit.edu

Collaborators/IFG:

Dr. Osama Shekhah Olexandra Zybaylo Xia Stammer Dr. Hui Wang Hasan Arslan Tatjana Ladnorg Dr. Romain Heck Prof. M. Franzreb Huayna Streit

Cooperations:

Prof. R.A. Fischer (Bochum) Prof. A. Terfort (Frankfurt) Prof. C. Wickleder (Siegen) Dr. M. Buck, St. Andrews (UK) Prof. C. Ocal, Barcelona (ES) Prof. J. Veciana, Barcelona (ES)

Thank you for your attention