

Large Scale Data Facility Storage services for Data Intensive Science

Jos van Wezel, Rainer Stotzka

In close collaboration with: Institute for Data Processing and Electronics Institute of Toxicology and Genetics Institute for Applied Computer Science

STEINBUCH CENTRE FOR COMPUTING - SCC

Outline

- Large scale data
 - examples and challenges
- Experience at SCC with large scale data
 - Steinbuch Centre for Computing
- The LSDF project
 - current status and implementation
- Data management
 - data placement / replica management
 - meta data handling: the need for a tailored approach

The data challenge

- (Imaging) Science produces tons of data
 - growth is exponential
 - need analysis and storage workflows
 - need integrated compute services
- Data that cannot be found (in a few seconds) is nonexistent data
 - accessibility increases the data value
 - simple access (input and retrieval) increases acceptance by communities
- Care for valuable 'old' data
 - needed for reprocessing
 - to track changes over time
 - analysis by others (verification)
 - legal issues

The Large Scale Data Facility Project

- Address the needs of data intensive science
 - offer data intensive computing
 - tools and infrastructure
 - where focus is on the data
 - and a tight integration of data storage and processing is ensured
- Started in 2009 using screens from ITG
- Today involving several KIT institutes
 - SCC, IPE, ITG, IAI, ANKA, ...
 - Cooperation with BioQuant of Univ. Heidelberg
 - State wide (Baden-Wuerttemberg) storage of scientific data

|--|

SCC – Steinbuch Centre for Computing

- What qualifies SCC to operate the LSDF?
 - Central IT services for KIT
 - networking, data protection and archiving
 - Several compute clusters each with several 1000 cores
 - HPC clusters
 - Node in BW grid project
 - Storage
 - Compute nodes
 - World wide Help desk
 - On-Call operators
 - 24x7 operation
 - Operate the GridKa T1
 - Storage, computing and networking for the LHC

Existing Large Scale Data

- LHC Large Hadron Collider
 - Produces 10 PB per year in 2010
 - The GridKa Tier 1 at SCC stores 1 PB/year
 - Currently 5 PB data stored
- ANKA ÅNgströmquelle KArlsruhe / ISS
 - Tomography and other beam line experiments
 - 60 TB raw data + 3 times processed data = 240 TB/year 1 PB/year (2013)
- Immunogenetics Institute Charité Berlin
 - Computer tomography of sea urchins
 - several hundreds of TB
- ITG KIT
 - High Throughput Microscopy
 - estimated 1-2 PB/year
- BioQuant Univ. of Heidelberg
 - High Throughput Microscopy
 - Genome sequencing, Electron-microscopy
 - estimated 1-2 PB/year

Integrative tools: prerequisites

- Large scale storage facilities
 - handling of large data sets
- Bioinformatics tools to retrieve, analyse and model data
 - interactive environments
 - graphical Wiki
 - mathematical tools
 - virtual reality tools for animation of networks,
 - 3D and 4D models
- Search engines
- Everything we did not think of before

LSDF birds view

Computing

Experiments should be able to process data locally

- i.e. where the data is located
- 15 days to transfer 1 PB over ideal 10Gb/s link
- dedicated cluster
- 58 nodes with 8 cores, 36GB memory
 - directly attached to storage (GPFS)
- Hadoop environment
 - 110 TB HDFS, Hadoop native filesystem
 - required for Hadoop workflows
 - extreme scalability on commodity hardware
 - available from the Cloud environment OpenNebula
 - users can deploy own dedicated data-processing VMs
 - reliable, highly flexible, and very fast to deploy

OpenNebula.org

Storage

- 2 high grade disk systems
 - 550 TB [Data Direct Networks]
 - 1,2 PB 3 PB (2011) [IBM]
 - Fibre Channel attached
- Dedicated storage servers
- Tape backend for archive and backup
- GPFS on top of each storage system
 - exported as GPFS, NFS, CIFS (Windows native)
- Directly attached to processing cluster

Networking

- 10 Gb/s dedicated redundant backbone
- 10 Gb/s dedicated links to some partners, 1Gb/s others

LSDF: Provided services

- Large scale storage and world wide secure access to data
 - assure transparent access over diverse storage technologies
 - mask technology changes
 - integration in world wide accepted authentication methods
- Added value and tools to process data
 - Archival of data
 - Name space federation
 - Meta-data management and tools (see next talk of Rainer Stotzka)
- Development and deployment of community specific services
 - honour community specific techniques and systems
 - integrate existing methods and tools

Workflows – Processing pipeline

- Experimental data acquisition
- Raw data copied to LSDF
 - data-placement tools enforce rules
 - data is physically moved to most appropriate storage
 - initial metadata, tagging is provided
 - preprocessing workflows
- Scientists accessing data
 - search/locate
 - processing workflows on LSDF facilities
 - download and process data externally
 - define access rights for collaborators, or public access
- Data is archived
 - post validation
 - legal binding

Simplified Workflow

Handling large scale data

- Equipment and staffing
 - 24 x 7
- Finding the data: Metadata
 - Payload data and Meta data follow different paths
 - Needs to be stored and kept up to date with data
 - Metadata schema is highly project-dependent
 - Presupposes the use of a project metadata DB
 - More on meta-data in following talk of Rainer Stotzka
- Data placement and workflows
 - tiered data storage

Tiered storage

- Data is moved to and from tiers that differ in storage function and quality
- Tdaq : Quarantine
 - Where data is produced
- T0 : Process
 - High bandwidth and low latency to CPUs
 - Scratch/Volatile
 - local disks of workers nodes
 - shared file system of clusters
- T1: Archive
 - Longer term online storage (disk)
 - Source and destination of LAN transfers
 - Serving data to some (read mostly) applications
 - T2
 - Long term archive storage (tape)
 - Low latency scheduled access

Software

- Data placement via iRods
 - Popular in science community
 - IBM is in IRODs collaboration.
 - interface to users with X509 authentication.
 - Not to be used as disk manager or transfer protocol, Not as data catalog, provenance, bookkeeping tools
 - Just a replica catalog, data tier migration manager
- LSDF will enable global access via DataBrowser tool
- Open protocols like FTP , HTTP,

Roadmap (excerpt)

- Hardware
 - Growing storage capacity
 - 2 PB in Q4 2010
 - 4 PB in 2011, switch to SONAS on IBM storage
 - 6 PB in 2012
 - Dedicated tape storage by Q4 2010
 - Improved network connectivity
 - Dedicated 10 Gb/s backbone for remaining KIT institutes by Q1 2011
 - 40 Gb/s Link to BioQuant/Heidelberg by Q2 2011
 - Initial support for IPv6 in 2011
 - Provide tape archiving for BioQuant
- Service
 - Enable direct access storage for first experiments, Q3 2010
 - iRods software operational, Q4 2010
 - Additional communities integrated in 2011
 - ANKA (synchroton radiation ring)
 - IMK (meteorology and climate research)

To conclude

- First hardware up and running
- First software services available
- First data stored
- First experimental data processed
- Focus on user requirements
 - added value services on top of large storage
- Many scientific communities interested and getting involved
- Actively pursued
 - grow beyond KIT, HGF and build international collaborations
 - toward an exabyte storage system
 - Scaling to terabit networks and exabyte storage must start today
 - involve new experiments
 - explore new techniques, integrate/develop new services

Thanks for listening

The team behind LSDF at SCC: Serguei Bourov Ariel Garcia Bruno Hoeft Rainer Kupsch Bernhard Verstege

www.kit.edu

Points to seed the discussion

- data granularity
 - large data means large files.
 - data organisation is larger compartments is a must
- If tools do not exist or are not exactly what you like
 - software development is a time consuming process
 - software maintenance is a costly process
- data exchange
 - who wants data when?

Spare: Workpackages (proposal)

- Management (Programme Head, SCC LSDF coordinatior)
- Provisioning infrastructure, administration, maintenance
- Support
- Integration of Data Xfer technologies into Storage Middleware
- High throughput link to computing infrastructure
- Data and meta data organization
- Abstract Data Access Level API
- Tools and software components for applications
- Application/DAQ integration
- Data analysis workflows

Spare 1

- @ Institute of toxicology and genetics
 - fully automated microscopes
 - robot moves object to microscope
 - can potentially run 24*7
 - produce high resolution images (4 MB each)
 - over varying parameters (focus point, wavelength, ...)
 - 200k images per day, 2 TB/day
 - Estimated: 1 + PB/year in 2011, 6 PB/year in 2014
 - Raw data must be heavily analysed

Spare 2 Developments within LSDF

- Provisioning of storage and archives in exabyte scale
- Development of software technologies for distributed data management and archiving
- Development of efficient transport protocols from the experimental facilities, e.g. robotic microscopes, to the LSDF
- Development of technologies to handle the special requirements of experiment data (e.g. 3D image stacks)of various research communities (e.g. systems biology)
- Development of open standards and implementation across computing centre borders
- Provisioning of compute resources for data analysis
- Development and integration of data analysis services
- Specific support for users with data intensive applications
- Development of data and meta data models for specific user groups
- Optimized data organization for specific user groups

Keep storage areas independent

