

Air pollution, Climate Change and Health A challenge for multidisciplinary research

Peter Suppan

Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Campus Alpine, Germany

Overview

- Where I come from
- Facts and Problems
- Methodological Approach
- Results
- Conclusions

卡尔斯鲁厄科技研究所

F

卡尔斯鲁厄研究中心

10 计划 31 研究所 3690 研究人员 408 Mio € 经费

卡尔斯鲁厄大学

11 成员 118 研究所 4269 研究人员 18353 学生 299 Mio € 经费

自然和工程科学

260 km

- KIT 阿尔卑斯区-

Institute for Meteorology and Climate Research (IMK-IFU)

Atmospheric Environmental Research

大气环境研究

平流层臭氧损耗

空气质量

Climate Change

气候变化

生物多样性

沙漠化

(source: IPCC 2001, WG1 Report, Summary)

水

森林

(来源:IPCC2001, WG1报告, 摘要部分)

The Challenge

Facts and Problems

Driving Force: Health Impact

Causes

Air Quality

Climate Change

particles

gaseous pollutants (e.g. ozone, nitrogen oxides)

. . . .

Increasing uv-radiation

. . .

cold- & hotness

extreme weather situations

• • •

Infections (air-water)

. . .

direct

indirect

Meteorology / Climate: Impact

Source: Vandentorren et al. 2004

Air Quality Impact

EU-average 2000 vs 2020:

- Life expectancy reduction of 9 months reduced to 6 months
- Annual loss of 4 Mio. life years reduced to 2.3 Mio
- Annually 386.000 premature deaths reduced to 251.000
- Annually 110.000 serious hospital admissions reduced to 63.000

Source: CAFÉ (Clean Air for Europe), 2005

Mortality rates on PM₁₀ increase

Region	Percentage change	Reference
Asia	4.9% (2.3%-7.6%)	HEI, 2004
Europe	6.0% (4.0%-8.0%)	Katsouyanni, 2001
Latin America	6.1% (1.6%-10.7%)	* PAHO, 2005
United States	2.1% (0.9%-3.3%)	Dominici, 2003
Worldwide	6.5% (5.1%-7.6%)	Stieb, 2002

PAN American Health Organization, 2005

Based on studies in Mexico City, São Paulo, Santiago de Chile (per 10 µg/m³ PM₁₀ change)

Economical Benefit

Reduction benefit is 10 times higher as for ozone, e.g. Mexico City about \$2 Bill.

M. Krzyzanowski & H-G. Mucke, WHO update by Jordan et al, CEPAL

Molina and Molina, 2002

Causal chain: Air Pollution-Health

Good policy flows from good data and from sound analysis

Cifuentes, et al 2005

State of the art

- ➢ General correlations between air pollution and adverse health effects are well known
- Also the adverse health impact of single pollutants without cross correlations to others are well studied (but out of a mixture of pollutants it is hard to differentiate the impact of single pollutants)
- Correlation of Meteorology / Weather / Climate and human health is well known (espe. concerning the air temperature)

Research needs.....

- ➤ The complex chemical interactions of emission transmission air pollution deposition / exposure need detailed investigations on the causal chain, e.g.
 - Source apportionment
 - Particle interaction / composition
 - Deposition rates / accumulation
 - (real) Exposure
- ➤ Circulation patterns → Regional-Urban interactions
- Climate Change Impact on these topics
- Only multidisciplinary approaches allow a holistic analysis
- **>**

Methodological Approach

Measurement Data

Traffic Data

Air Quality & **Climate Change Approach**

Air Quality

Scenario

Indicator

Mortality

Subclinical Effects

Health Impact

Stakeholder

Research Project

Risk Habitat Megacity

¿sostenibilidad en riesgo?

Impact on Air Quality

Land use

Natural Land Use Change (Impact)

619 mm

1: Beijing

2: Desert Gobi

3: Desert Takla Makan

Monat | Temp. | Nied. (°C) JAN 13,7 APR 20,1 JUN 24.7 JUL 26,1 243 24.9 19,9 -2.7 Temp.-Jahresmittel Niederschlagssumme

Beijing/VR China

39°57'N/116°19'E

52m

Aerosol Pollution

Beijing

Pictures: Matthias Tesche, IfT

Source: Stefan Norra, KIT

Dust Storms

Beijing

18.04.2006

SEM Images

Anthropogenic

Connected particles

UNI KARLSRUHE
LE01530 LEM:pp EHT = 10.00 kV Signal A = InLens Date :30 May 2005 File Name = 1Tag2W_06.tif

Source: Stefan Norra, KIT

Peter Suppan

Land Use Change

:	Santiago de Chile 2002	Mexico City 2005
Population	6.061.000	19.410.000
Urbanized area (km²)	641	1800
Population density (p / km	n²) 9.500	10.800
Population growth (% / y)	~1,32	~1,28

Source: U. Weiland, E. Banzhaf, A. Ebert, A. Kindler, R. Höfer (UFZ)

Peter Suppan

Source: Poduje 2005 (Santiago de Chile) APERC 2007 (Mexico City)

Effect of land use change

Temperature difference with and without urban sprawl Diurnal variation of ozone concentrations considering land use change

Source: Renate Forkel (IMK-IFU)

Impact on Air Quality

- Land use
- Energy

Energy Consumption

Energy consumption by sources

Energy Consumption - China

Source: APERC 2007, Shobhakar Dhakal (2004). Urban Energy Use and Greenhouse Gas Emissions in East Asian Megacities

Peter Suppan

Source: China Statistical Abstract 2009

Global final energy consumption

Emission Reduction Strategies

Impact on Air Quality

- Land use
- Energy
- Mobility

32

Traffic

Traffic Volume in 1996 and 2020

Source: US Dept.of Energy, 2000

Sampling Strategies

Measurement sites: LAPC tower, ceilometer, DOAS

Münkel, C., "Mixing height determination with lidar ceilometers results from Helsinki Testbed," Meteorol. Z. 16, 451-459 (2007).

Emeis, S., Schäfer, K., Münkel, C.: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol. Z. 18, 2, 149-154 (2009)

Traffic & Emission Modelling: Santiago

61 vehicle categories

Buses licitados Diesel convencional

Buses licitados Diesel tipo 1

Buses licitados Diesel tipo 2

Buses licitados Diesel tipo 3

Buses licitados Dlesel tipo 3 Articulando

Buses licitados Diesel tipo 2 con filtro

Buses licitados Diesel tipo 3 con filtro

Buses Interurbanos Diesel convencional

Buses Interurbanos Diesel tipo 1

Buses Alimentador Diesel tipo 2

Buses Alimentador Diesel tipo 3

Buses Alimentador Diesel tipo 3 con filtro

5 categories of emissions

cold emissions hot emissions evaporation

resuspension (→ abrasion tyres, abrasion brakes)

6 emission pollutants

PM10

SO₂ NOx

HC

CO

CO₂

[Gasoline consumption]

Input data for the simulation of traffic emissions

Coupling of Scales

Micro-scale modelling e.g. NO_x with GRAL

Peter Suppan

Meso-scale modeling e.g. NO₂ with WRF/chem

Impact on Air Quality

- Land use
- Energy
- Mobility
- Climate Change

Consequences of Climate Change

Kamal-Chaoui, Lamia and Alexis Robert (eds.) (2009), "Competitive Cities and Climate Change", OECD. Regional Development Working Papers N° 2, 2009, OECD publishing.

Climate Change

Climate Change Impact on Urban Agglomerations

Resolution too coarse for regional impact analysis!

Dynamical Downscaling

Yearly Mean Precipitation 1961-1975

Validation of the simulation results by comparing simulated observed precipitation

Regional Climate Change Impact

High resolution climatechemistry simulations - Mexico -

Source: Renate Forkel (IMK-IFU)

Regional Climate Change Impact

Impact on Air Quality

- Land use
- Energy
- Mobility
- Climate Change

- Air Quality
- Health Impact

Integrated Approach

Adverse Health Effects: Santiago

Source: Ulrich Franck, UFZ

Maximum Mortality Risks per 10 µg/m³ PM₁₀

Adverse health effects of PM₁₀ in 2006

Conclusions

- Air quality & Climate Change issues need an holistic and multidisciplinary approach
- Strong links to
 - Regional and Spatial Planning Sciences
 - Energy & Technology Assessment Disciplines
 - Transportation Sciences
 - Health / Epidemiological Disciplines
 - Social Sciences
- Link between these fields tackles central problems in mega cities
- Complex system of mega cities, needs further process studies in each discipline
- Air quality and health impact assessment studies are essential prerequisites for mitigation and adaptation strategies and for reducing e.g.
 - environmental risks (air pollution, climate change impact, congestion, waste, ...)
 - social risks (spatial segregation, health problems, ...)
 - costs (healthcare system, transportation, production, ...)

Co-operations and Partners

- Chinese Academy of Sciences (CAS), Beijing
 - Prof. Yuesi Wang
 - Dr. Xin Jinyuan
- China University of Geosciences (CUG), Beijing
 - Prof. Kuang Cen
- China University of Mining and Technology, Beijing (CUMTB)
 - Prof. Longyi Shao
- Chinese Research Academy of Environmental Sciences (CRAES), Beijing
 - Prof. Chai Fahe
 - Prof. Chen Yizhen
- German Meteorological Service (DWD), Freiburg
 - Dipl.-Ing. Volker Dietze
 - Dipl.-Ing. Mathieu Fricker
- Helmholtz Center Munich (HMGU)
 - Prof. Dr. Annette Peters
 - Dr. Jürgen Schnelle-Kreis
- Qingdao Research Academy of Environmental Sciences (QRAES)
 - Prof. Sun Hekun
- ? School of Public Health, Peking University, Beijing
 - Prof. Xiao-chuan Pan

Capacity Building

in cooperation with Prof. Longyi Shao (CUMTB), Prof. Kuang Cen (CUG) and Prof. Yuesi Wang (CAS-IAP)

Rongrong Shen, full CSC PhD Student (4 years)

aerosol measurements with the focus on source apportionment

Ruiguang Xu, full CSC PhD Student (4 years)

air quality modeling with the focus on aerosol composition and distribution

Ling Hong, sandwich (IAP-CSC) PhD Student (4 years)

 air quality measurements with the focus on remote sensing techniques (SODAR, contactless)

Yu Yang, full CSC PhD Student (1 year)

aerosol measurements with the focus on source apportionment / optical depth

Thank you very much for your attention

