

Survey Lecture: Benchmark Test Taylor bubbles

Martin Wörner

Karlsruhe Institute of Technology Institute for Nuclear and Energy Technologies

SPP 1506 Annual Conference Regensburg, April 11-12, 2011

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

FIGURE 8. Emptying a glass tube 7.9 cm. diameter.

www.kit.edu

Outline

- Taylor bubbles and Taylor flow
 - Recalling some essential facts
- Taylor flow and SPP 1506
 - Why Taylor flow as validation experiment?
 - Validation data base: what should be measured?
- Benchmark test cases as starting point
 - Bretherton problem
 - Buoyancy driven rise of a Taylor drop in a circular pipe
 - Taylor flow in a square mini-channel

Taylor bubble

- An elongated bullet-shaped bubble that almost fills the entire cross-section of a channel
- Usually buoyancy driven flow in a vertical channel

Fig. 3.-Tube diameter 2.695 cm.

Gibson (1913)

Dumitrescu (1943)

Taylor flow (segmented flow, bubble-train flow)

- Pressure driven flow of a sequence of Taylor bubbles
- Any channel/flow orientation (vertical up/down, horizontal)
- Usually narrow channel (small hydraulic diameter)
- Individual Taylor bubbles are separated by liquid slugs which are free from gas entrainment

Co-current downward Taylor flow in a square channel (1 mm \times 1 mm)

Key advantages of Taylor flow

- Good mixing of species within the bubble
- Large interfacial area per unit volume and thin liquid film between bubble and wall \Rightarrow efficient heat and mass transfer
- Axial segmentation of liquid \Rightarrow reduced axial dispersion
- Recirculation in liquid slug ⇒ good mixing in liquid slug and wall-normal convective transport in laminar flow

7

Bubble diameter in a square channel

8

Bubble shape – effect of *Re* M. Kreutzer, Ph.D thesis, Delft University of Technology, 2003 0.40.20 ٤ -0.2 -0.4-0.50 0.51.51 $\mathbf{2}$ 2.53

Figure 2.9: Shape of the gas-liquid interface for Re = 1,10,100,200 at Ca = 0.04

For fixed channel size and fluid properties a change in Ca goes along with a change in Re (both are linearly related by the Laplace number La which is constant then)

$$Re = \frac{\rho_{\rm L} D_{\rm h} U_{\rm B}}{\mu_{\rm L}} = La \cdot Ca, \quad La = \frac{\sigma \rho_{\rm L} D_{\rm h}}{\mu_{\rm L}^2}$$

Recirculation and by-pass flow region with complete bypass flow bypass flow recirculation flow $U_{\rm B}$ L.maxL.maxdividing streamline Fully developed laminar flow: $U_{L,\text{max}} = CU_{L,\text{mean}}$ ($C_{\odot} = 2; C_{\Box} = 2.096$) $U_{L,\text{mean}} = J_{\text{tot}}$ (velocity profile in liquid slug is fully developed i.e. parabolic for $L_{sl}/D_{h} > 1.5$) In Taylor flow it is: Condition for bypass flow is Condition for recirculation flow is $U_{\rm R} / J_{\rm tot} < C$ $U_{\rm B} / J_{\rm tot} \ge C$

Sketches in moving frame of reference after Taylor, J. Fluid Mech. 10 (1961) 161–165

Outline

- Taylor bubbles and Taylor flow
 Recalling some essential facts
- Taylor flow and SPP 1506
 - Why Taylor flow as validation experiment?
 - Validation data base: what should be measured?
- Benchmark test cases as starting point
 - Bretherton problem
 - Buoyancy driven rise of a Taylor drop in a circular pipe
 - Taylor flow in a square mini-channel

Why Taylor flow?

- Taylor flow is of **practical technical relevance**
- Taylor flow is of fundamental physical interest as it constitutes a prototypical problem for the non-linear interaction between viscous, inertial and surface tension forces under geometric constraints
- Taylor flow allows to increase the complexity of the flow and bubble shape by variation of one main control parameter (bubble velocity respectively Ca)
- Thus, Taylor flow allows to study complex interfacial hydrodynamics in a relatively simple set-up, and is well suited for validation of numerical methods and computer codes

Taylor flow: a numerical challenge

- Thin liquid film (non-uniform thickness in square ch.)
- Complex flow field in laminar flow (recirculation pattern in liquid slug, vortices in bubble wake)
- Complex bubble shape with large local interface curvature (in corners of square channel) → spurious currents

Experiments on Taylor flow

- Goal: Provide detailed data which allow for a quantitative validation of numerical methods and computer codes
- Perform experiments under well defined and documented experimental conditions which allow a detailed recalculation
 - Thermo-physical properties of both fluids
 - Volume of the Taylor bubble
 - Liquid and gas volumetric flow rates
 - Boundary conditions for computational domain
 - **.**..
- Validation data base should not only serve members of SPP 1506 by the entire international CFD community
 - Set-up of a web database with experimental data (see presentation by C. Meyer)

Exp. setup and parameters

- Experiments in circular and square vertical channel
 - Hydraulic diameter = 2 mm
 - Co-current upward Taylor flow
 - "Perfect" Taylor flow (identical bubbles/slugs; reproducibility!)
- Approximate range of parameters
 - Variation of capillary number by a least two orders of magnitude (0.005 1)
 - Variation of Reynolds number by at least two orders of magnitude (1 500)
 - Realization of this parameter range by variation of liquid viscosity (water/glycerol mixture) and gas/liquid flow rates
 - see the following two presentations on experiments ...

Quantities to measure (if possible)

Bubble shape

- minimum liquid film thickness (lateral and diagonal)
- axial profile of liquid film thickness (lateral and diagonal)
- interface curvature at the bubble front and rear
- interface curvature in the corners of square channel
- full three-dimensional bubble shape (tomography?)
- Local velocity profiles
 - in liquid film (lateral and diagonal, corner flow)
 - close to bubble front and rear (dividing streamline)

Pressure drop

Local concentration field in mass transfer

Outline

Taylor bubbles and Taylor flow Recalling some essential facts Taylor flow and SPP 1506 Why Taylor flow as validation experiment? Validation data base: what should be measured? Benchmark test cases as starting point Bretherton problem Buoyancy driven rise of a Taylor drop in a circular pipe

Taylor flow in a square mini-channel

Benchmark cases as starting point

- Validation data from Taylor flow experiments in SPP 1506 are not available yet ...
- Interested groups may want to start right now with simulation of Taylor flow in order to gain experience
- For this purpose three test cases are proposed
 - Bretherton problem
 - Buoyancy driven rise of a Taylor drop in a circular pipe
 - Taylor flow in a square mini-channel
- These are shortly introduced; for details see SPP homepage (Benchmark simulation of Taylor flows.pdf)

1. Planar Bretherton problem

- Planar Bretherton problem: displacement of a viscous Newtonian liquid between two plates (distance 2d) by an inviscid semi-infinite gas bubble moving with velocity U_B
- Analytical solution by lubrication theory for small Ca

$$\frac{h_{\rm film}}{d} = 1.3375 Ca^{2/3}$$

- Set-up of benchmark case
 - Long viscous bubble instead of semi-infinite inviscid one
 - Computational domain: 2d = 1mm, length 20d = 10 mm
 - Properties: $\rho_{\rm c}$ = $\rho_{\rm d}$ = 1000 kg/m³, $\mu_{\rm c}$ = 10⁻² Pa s, $\mu_{\rm c}$ = 10⁻⁵ Pa s, g = 0
 - Four different values of σ , *Ca* = 0.0019 1.15, *Re* \approx 0.1

2. Rise of a single Taylor drop

- Experimental and numerical study of the buoyancy driven rise of a Taylor drop in a vertical circular pipe (diameter D = 11.0, 20.1, 26.1, 30.8 mm) by Tomiyama's group
- 34 experimental cases with different parameters / physical properties are considered (pure and contaminated systems)
- Here: selection of three cases with characteristic bubble shape (all for pure system)

Fig. 17. Comparisons between measured and predicted shapes (left: measured, right: predicted)

Hayashi, Kurimoto, Tomiyama, Int. J. Multiph. Flow 37 (2011) 241–251 (see also Hayashi, Kurimoto, Tomiyama, 7th Int. Conf. Multiph. Flow, Tampa, FL USA, 2010 Kurimoto, Hayashi, Tomiyama, 7th Int. Conf. Multiph. Flow, Tampa, FL, USA, 2010

22 12.04.2011 M. Wörner

Computational set-up

- Frame of reference moving with the drop
- 2D axi-symmetric computations
- Inflow and outflow boundary conditions
- Experimental data available for validation
 - terminal drop velocity
 - shape of Taylor drop

Hayashi, Kurimoto, Tomiyama, Int. J. Multiph. Flow 37 (2011) 241-251

3. Taylor flow in a square channel

- Code-to-code comparison
 → no experimental data available for comparison
 → no strict validation!
- Domain 2mm × 2mm × 2mm
- Co-current upward Taylor flow ("bubble-train" flow)
- Periodic boundary conditions in vertical direction
- Grid: 48 × 48 × 48 (or 64³)

24

Buoyancy driven flow

12.04.2011 M. Wörner – Benchmark test Taylor bubbles

25

Pressure driven flow

26 12.04.2011 M. Wörner – Benchmark test Taylor bubbles

For further details see SPP web page (internal) If you have questions regarding the test cases or you need some support you are welcome to contact me (E-mail: martin.woerner@kit.edu, Phone: 0721 608 24477)

