PROBABILISTIC ANALYSIS OF A ROLLING CONTACT FATIGUE TEST FOR SILICON NITRIDE

M. Härtelt, H. Riesch-Oppermann, I. Khader, O. Kraft
Motivation

High strength ceramics (Si$_3$N$_4$) are used in rolling applications
- Time-dependent failure due to slow crack propagation
- Design of such components requires probabilistic methods
- Rolling contact fatigue test as model system for rolling applications
Theory: Crack propagation mechanisms

- Crack loading

\[\Delta K = K_{\text{max}} - K_{\text{min}} \]

\[R = \frac{K_{\text{min}}}{K_{\text{max}}} \]

- Subcritical crack propagation
 - Stress corrosion/ chemical reaction
 - Quasi-static effect

- Cyclic crack propagation (fatigue)
 - Depends on load sequence
 - Degradation of strengthening effects (grain bridging)

\[\frac{da}{dt} = A_S \cdot \left(\frac{K_1}{K_{lc}} \right)^{n_S} \]

\[\frac{da}{dN} = \frac{A}{(1 - R)^{n-p}} \cdot \left(\frac{\Delta K_1}{K_{lc}} \right)^n \]

\[A_S, n_S: \text{material properties} \]

\[A, n, p: \text{material properties} \]
Theory: Failure probability

Weibull Theory

- Integration over component surface/volume and flaw orientation
- Equivalent stress σ_{eq}: local failure criterion

Subcritical crack propagation

$$P_f = 1 - \exp \left[-\frac{1}{A_0} \int_A \frac{1}{2\pi} \int_{\alpha} \left(\frac{\sigma_{eq}(t)}{\sigma_0} \right)^{n_S-2} \max_{t \in [0,T]} \left(\frac{\sigma_{eq}(t)}{\sigma_0} \right) \left(\frac{\sigma_{eq}(t')}{\sigma_0} \right)^{n_S} \int_0^\alpha \left(\frac{\sigma_{eq}(t')}{\sigma_0} \right)^{n_S} dt' \right] d\alpha dA$$

Cyclic crack propagation

$$P_f = 1 - \exp \left[-\frac{1}{A_0} \int_A \frac{1}{2\pi} \int_{\alpha} \left(\frac{\sigma_{eq,max}(\eta)}{\sigma_0} \right)^{n_S-2} \max_{\eta \in [N_1,N_k]} \left(\frac{\sigma_{eq,max}(\eta)}{\sigma_0} \right) \left(\frac{\sigma_{eq,max}(N')}{\sigma_0} \right)^{n} \int_{N_1}^\alpha \left(\frac{\sigma_{eq,max}(N')}{\sigma_0} \right)^{n} (1 - R(N'))^p dN' \right] d\alpha dA$$

Time/Cycle dependent load history
Theory: Numerical evaluation

STAU1: Finite-Element Postprocessor for reliability assessment of ceramics

Reliability analysis for rolls \Rightarrow Complex load history must be considered

Results: Material parameters Si$_3$N$_4$-SL200

- **Strength**
 \[\sigma_{4PB} = 1044 \text{ MPa} \]
 \[m = 11.5 \]

- **Subcritical crack growth**
 \[n = 42, \quad A_S = 10^{-6} \text{ m/s} \]

- **Cyclic fatigue parameters (air)**

 - **Crack growth exponent** \(n \) depends on load ratio \(R \) (n=20,31)
 - **Curves must be represented by common exponent** \(n \):
 \[\frac{da}{dN} = \frac{A}{(1 - R)^{n-p}} \left(\frac{\Delta K}{K_{lc}} \right)^n \]
 \[n = 24, \quad p = 2.2, \quad A = 3 \cdot 10^{-8} \text{ m/cycle} \]

Results: Material parameters Si_3N_4

- Cyclic fatigue parameters (water)

- Water enhances fatigue effect!

- Measurements for $R=0.5$: $n=29.9$

- Parameters are evaluated assuming $p=2.2$ (air):

$$\frac{da}{dN} = \frac{A}{(1-R)^{n-p}} \left(\frac{\Delta K_1}{K_{lc}} \right)^n$$

$n=29.9$, $p=2.2$, $A=5 \cdot 10^{-5}$ m/cycle
Results: Rolling contact fatigue (RCF) test

- Steel-disk
- Si₃N₄-disk
- lubricant

Stress distribution

- Damage after 10^5 rotations

- Lubricant: friction coefficient $\mu = 0.085$
- $F = 1700\text{N}$
- Relative slip: $\sim 22\%$
- Max. principal stress: $\sim 1100\ \text{MPa}$

RCF tests: Iyas Khader, Fraunhofer Institute IWM, Freiburg
Results: Rolling contact fatigue (RCF) test
Results: Rolling contact fatigue (RCF) test

- lubricant: friction coefficient $\mu=0.085$
- $F=1700\text{N}$
- relative slip: $\sim22\%$
- max. principal stress: $\sim1100\text{ MPa}$

RCF tests: Iyas Khader, Fraunhofer Institute IWM, Freiburg
Results: STAU analysis

- Contact damage: initiation of macroscopic flaws
- Predicting of a certain flaw density on the surface

- STAU: probability of the initiation of one flaw in the considered subarea
- Size of subarea ↔ crack density
- Results refer to crack density of 1 crack per 250 μm along the circumference
Results: Failure probability

- Probability to initiate one macroscopic crack every 250 μm

\[\ln\left(\ln\left(\frac{1}{1 - P_f(Z)}\right)\right) \]

Weibull function

\[P_f = 1 - \exp\left[-\left(\frac{Z}{N_0}\right)^m\right] \]

- Weibull function

- Highest failure probability obtained for fatigue parameters in water.

\begin{itemize}
 \item Weibull function
 \item \[P_f = 1 - \exp\left[-\left(\frac{Z}{N_0}\right)^m\right] \]
 \item \(m \) – slope of the curve
 \item \(N_0 \) - characteristic lifetime (63%-quantile)
 \item \(Z \) – no. of rotations
\end{itemize}
Results: Failure probability

- Relation with experimental crack density after 10 h

- Initiation probability low for parameters in (air)
Results: Parametric study

- Influence of crack growth exponent n

- Crack growth exponent has a strong influence on the results:
 For $n<25$, crack initiation probability is $>70%$;
 Characteristic lifetimes are below 10 h
Discussion

- Agreement with experimental results for lower \(n \)-values if water parameters are used

- Stress history: \(R=0 \) dominates
 - Using a lower \(n \) value (\(n \approx 20 \)) in the case of water.

- Limitations of the analysis scheme:
 - Stress gradients in the range of natural flaws
 - Interaction of macroscopic cracks
 - Wear
Summary

- STAU as general tool for reliability assessment under complex loading
- Prediction of evolving crack patterns on roll surface is possible
- Sensitivity to crack growth parameters is challenging
Acknowledgements

Financial support by the “Deutsche Forschungsgemeinschaft” (DFG) is gratefully acknowledged. The work was performed within the framework of the Collaborative Research Centre 483 “High performance sliding and friction systems based on advanced ceramics” at the University of Karlsruhe (now: Karlsruhe Institute of Technology KIT).