

In-pile Test of a Small Scale Fuel Assembly Under Supercritical Water Conditions

T. Schulenberg, Karlsruhe Institute of Technology M. Ruzickova, Centrum Výzkumu Řež

NOMAGE 4, Halden, Norway, Oct. 31 to Nov. 1, 2011

LVR 15 Core Configuration

Test Fuel Assembly in Supercritical Water

4 fuel rods in a pressure tube replacing a LVR-15 fuel assembly Coolant pressure: ~25 MPa

Thermal shielding keeping

coolant to reactor conditions

Predicted Conditions in HPLWR Core

Superheater Conditions:

Coolant temperature 500°C to 600°C

Lin. Power < 10 kW/m

Cladding alloys to be tested in Supercritical Water Loop in Řež (existing)

Evaporator Conditions:

Coolant temperature 350°C to 400°C

Lin. Power < 39 kW/m

Fuel assembly to be tested in Fuel Qualification Test in Řež (new)

Fuel Assembly Design

Test Assembly

Use of

- Same fuel rod diameter (8mm)
- Same fuel rod pitch (9.44mm)
- Same wrapped wires (spacers)

Technical Challenges under Evaporator Conditions

Risk of local deterioration of heat transfer causing hot spots of the cladding at low mass flux

Coolant mass flux : 1332 kg/m²s Surface heat flux: 1375 kW/m²

Technical Challenges under Evaporator Conditions

-0,5

Predictions by Kremers et al. (2010)

Surface heat flux: 1660 kW/m^2 Linear heat rate: 41.7 kW/m

Technical Challenges under Evaporator Conditions

Example: Solubility of NaCl at 25 MPa Risk of deposits as 10⁰ solubility changes when Leusbrock, I., Metz, S. J., Rexwinkel, G., and Versteeg, G. F. (2009); Solubility of passing the pseudo-critical 1:1 Alkali Nitrates and Chlorides in Near-**10**⁻¹ Critical and Supercritical Water ; Journal of temperature at 384°C Chemical & Engineering Data 54(12), 3215-3223. **10**⁻² 14 10⁻³ S / mol · kg⁻¹ 25 MPa **Density [mol/L] Density [mol/L] Density [mol/L]** 10-4 10⁻⁵ 0 10⁻⁶ 300 350 400 450 500 Temperature [C] 10-7 10 ρ / mol · L⁻¹

9 01.11.2011 T. Schulenberg, KIT

Supercritical Water Loop

Safety system

Material Options for Fuel Claddings

Test of available cladding alloys in the HPLWR Phase 2 project

Qualification of Cladding Materials

- Material Options: Stainless steels 1.4970, TP347H, 316L
- Corrosion experiments in low and high oxygen supercritical water environment at VTT and JRC Petten
- SCC tests using tensile specimen (SSRT)
- Welding tests of end caps and wires
- Material test in a fuel rod mock up

Validation Tests

Out of pile validation test of the test section with 4 electrically heated fuel rods.

To be performed at Shanghai Jiaotong University, China.

Supercritical water loop SWAMUP at SJTU Shanghai, China

Project SCWR-FQT, Jan. 2011 to Dec. 2013

Objectives: Licensing the loop as a nuclear facility operated with supercritical water

- To design a test section, a loop and all safety and auxiliary systems required for operation of a fuel qualification test;
- To analyze the test facility under normal and accidental conditions to demonstrate safe operation;
- To build and operate an out-of-pile test assembly with supercritical water having the same test section geometry, but heated electrically;
- To validate codes for thermal-hydraulic predictions of the flow structure in SCWR fuel assemblies;
- To focus the material research on in-core materials which could be licensed in near future and to prepare a material database;
- To complete the required licensing documents;
- To teach and train young scientists in licensing procedures for nuclear facilities including the required quality management methods.

Partners of the SCWR-FQT Project

Euratom: CVR (Czech Republic) KIT (Germany) NRG (Netherlands) KFKI (Hungary) VTT (Finland) BME (Hungary) JRC-IE (EU)

China: SJTU THU NCEPU **USTB CNNC/NPIC** CIAE CGNPC **SNPTC** XJTU