

Investigations on thermal, mechanical and tribological properties of ceramic/steel-joints

I. Südmeyer, J. Schneider, M. Rohde

Karlsruhe Institute of Technology, Institute for Applied Materials

- motivation
- material properties
- results
 - microscopic compound analysis
 - shear testing
 - tribological testing
- conclusion

Motivation

Material Properties	AI_2O_3	PLS-SiC	Steel	Incusil-braze	Sn50 50Sn48Ag2Ti
Company	Friatec AG	ESK Ceramics	-	Morgan Chem.	KIT, IMF I
Density ρ / g/cm³	3.9-3.95	3.0	7.85	9.7	8.3
Strength σ / MPa	3501	400	560-710	338	-
Youngs modulus / GPa	380	410	210	76	68
Thermal conductivity λ , W/ml	38	145	44	166	-
Coefficient of thermal expansion α , 10 ⁻⁶ m/K	8.4	4.1	11.0	18.2	-

SEM-images of ceramic/AgCuTi/steel-joints

- inhomogeneous or no wetting for AgCuTi- and AgCuInTi-brazing filler on SiC despite a explicit Ti rich reaction zone
- homogenous, seamless wetting and Ti-reach reaction zone on Al₂O₃
 - with AgCuTi- and AgCuInTi-filler

SEM images of SiC-steel joints

SiC-AgCuTi-steel

50Sn48Ag2Ti

- good seamless wetting for SnAgTi-alloys with Sn ≥ 30wt% above T ≥ 900°C
- thin, inhomogeneous Ti rich reaction zone
- large Ti-particles in inner braze region

Shear strength of laser brazed Al₂O₃/AgCuInTi/steel-joints

Shear strength of laser brazed Al₂O₃/AgCuInTi/steel-joints

Shear tests of laser brazed SiC-SnAgTi-steel joints

variation laser beam profile

Tribological characterisation of Al₂O₃ and PLS-SiC

PLS-SiC exhibits compared to Al₂O₃ • a higher friction coefficient,

- a lower and more constant friction gradient and
- the highest temperatures.

Tribological characterisation

- Al₂O₃-joints exhibit higher average friction coefficients than the Al₂O₃-monolith.
- only few differences of average temperature between monolith and joint

Al₂O₃/steel-joints

friction gradient $d\mu/d\nu$

• Al₂O₃-monolith exhibits the lowest friction gradient dµ/dv compared to

Al₂O₃-brazing joints.

13 21.06.2011 introduction - brazing results - tribological results - conclusions

PLS-SiC/steel-joints: variation of joining technique

PLS-SiC/steel-joints: variation of joining technique

Tribological characterisation

summary

Brazing results

- no reproducable wetting of SiC with AgCuTi-filler
- good wetting of SiC was only achieved with SnAgTi-fillers for Sn fraction ≥ 30wt% but inhomogeneous Ti-rich reaction layer
- Increase of compound strength of ceramic/steel joints with homogenizing optic
 - $Al_2O_3/AgCuInTi/steel-joints$: from 20 MPa (m = 5) to 42 MPa (m = 2)

Tribological results

- SiC shows a higher and more constant friction coefficient than Al₂O₃
 - ➡ higher temperatures of 250°C
- Influence of joining technique on tribological behaviour

Thank you for your attention!

Deutsche Forschungsgemeinschaft

The authors thank the Deutsche Forschungsgemeinschaft for suppporting the Sonderforschungsbereich 483 "High performance sliding and friction systems on the basis of engineering ceramics".

