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Why regional climate modelling?

In the light of warming climate there is a need for adaption to changing 
environmental conditions especially in climate-sensitive regions as the alpine space

� flood prevention measures 

� drinking water supply

� hydroelectric power production

� water availability for agricultural purposes

� tourism

Decision makers need regional clima impact studies with a high spatio-
temporal resolution to provide regional precipitation and temperature fields. 

Now decisions have to be taken for the future!



Downscaling - from Global Climate Model (GCM) to Regional 
Climate Model (RCM)

GCM

RCM

downscaling

dynamical downscaling

the boundary conditions for the 
regional model are taken from 
GCM results.



Three different approaches:

Dynamical 
downscaling

Statistical 
downscaling

�Local variable of interest is predicted from values of the 
corresponding variable simulated at the closest grid point 
of the GCM

�Empirical adjustment compensates simulation errors 
and small-scale effects

�Output from the GCM is used to drive a nested 
high resolution regional climate model(RCM)

�The prediction is now based on the result at the 
nearby RCM grid point

�Statistic relationships are developedto link the 
local variable to predictor variables (stochastic 
weather generators)

In practice the downscaling techniques are often mixtures of this approaches 
and show a mixture of their attributes



Advantages of regional climate modelling

resolution 19.2 km resolution 4.8 km

R.Knoche, IMK-IFU, KIT 

But how good do RCMs reproduce the observed regional climate?



Example in the Alpine Space
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Example in the Alpine Space

Smiatek, Kunstmann, Knoche, 
Marx, 2009 (JGR) 

Precipitation 
bias up to 1.5 
mm/day :-|



Example in the Alpine Space

Smiatek, Kunstmann, Knoche, 
Marx, 2009 (JGR) 

Precipitation 
bias up to 2.5 
mm/day :-(



� The validation of the RCM results shows the need for bias correction (BC)
before coupling the model results to the hydrological models

� Bias correction methods:

� But still: improvement of bias correction/downscaling will influence the final 
results of the hydrological model  

Develop new methods

Copula theory could show new ways

• Linear BC (corrects difference in the mean)

• Non-linear BC (adjustment of mean and standard 
deviation)

• Histogram equalization techniques

• Bootstrap BC

• Quantile regression 

• ...

• often correlation based

• lack of correcting specific 
types of systematic errors

• mostly correction for single 
variables (decoupling)



Application: 

Bias-correction of regional climate modeling in the alpine space

Bias of mean annual total 
precipitation for the MM5 with 
respect to the DWD reference 
data set [%] (right)

�Dry bias (wet bias) for eastern part of Germany (alpine space & Rhine valley)

�Underestimation in the alpine region possibly due to the complex terrain

Domain and topography of 
regional climate simulations 
with MM5, 19.2 km spatial 
resolution (left).
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Theory: 
random sample from (X,Y):

In practice we have two time series: e.g. 

•modeled temperature and measured 
temperature

•modeled precip. and measured precip.

The joint dependence between these variables is fully 
characterized by their Copula C(x,y).

[mm]



� every Copula is the representation of the dependence structure 
of the two (or more) variables

� by using a Copula it is possible to derive a bi- or multivariate 
PDF f(x,y) just by knowing the single marginal distributions FX(x) 
and FY(y)
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the copula density c(u,v) is often called“dependence function”

)()())(),((),( yfxfyFxFcyxf YXYX ⋅⋅=
pdf of Copula (copula density) pdfs of the marginalsjoint density



PDFs of different Copula families

Clayton Copula

Gumbel-Barnett Copula

Gumbel-Hougaard Copula

Nelsen Copula

represent different 
types of dependence 

structure



Connection of the Copula parameter to rank based dependence 
estimators - Kendalls tau
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There is a relationship between Kendalls τ and the Copula 
parameter θ via (+)

(+)
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Gumbel-Hougaard Copula

θ is a monotonically 
increasing function of τ

high Copula parameters 
indicate strong 
correlation



larger Copula parameter - higher dependence

PDF of GH Copula for 4 different values of θ



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

scatter plot of the original data



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

ARMA-GARCH 
transformation is applied to get 
i.i.d. data

scatter plot of the iid residuals

transform data to 
an i.i.d. data set 
(X i

*,Yi
*)



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

ranks  (Ri,Si) of 
the i.i.d. data

ARMA-GARCH 
transformation is applied to get 
i.i.d. data

scatter plot of the ranks of the iid 
residuals

transform data to 
an i.i.d. data set 
(X i

*,Yi
*)

ranks have the same dependence 
structure as original data 

same Copula



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

ranks  (Ri,Si) of 
the i.i.d. data

ARMA-GARCH 
transformation is applied to get 
i.i.d. data

calculate the empirical 
copula Cn(u,v) CDF of the empirical Copula

transform data to 
an i.i.d. data set 
(X i

*,Yi
*)

ranks have the same dependence 
structure as original data 

same Copula



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

ranks  (Ri,Si) of 
the i.i.d. data

ARMA-GARCH 
transformation is applied to get 
i.i.d. data

calculate the empirical 
copula Cn(u,v)

estimate the Copula parameter and 
decide which copula family is 
appropriate

PDF of the Gumbel-Hougaard Copula

transform data to 
an i.i.d. data set 
(X i

*,Yi
*)

ranks have the same dependence 
structure as original data 

same Copula



Find a theoretical Copula to model the dependency between 
model output and measurement

data (Xi,Yi) needs to be i.i.d. (independent and identically distributed)

ranks  (Ri,Si) of 
the i.i.d. data

ARMA-GARCH 
transformation is applied to get 
i.i.d. data

calculate the empirical 
copula Cn(u,v)

estimate the Copula parameter and 
decide which copula family is 
appropriate

Simulate data from Copula

Back transformation of 
simulated data to a time series

scatter plot of simulated data

transform data to 
an i.i.d. data set 
(X i

*,Yi
*)

ranks have the same dependence 
structure as original data 

same Copula



After GOF-tests the Gumbel-Hougaard Copula was 
identified as appropriate

PDF of  the Gumbel-Hougaard Copula 
with 1.1θ =

1.1θ =



Modelling data from Copula New features 

Allows to apply the 
procedure to the whole 

range of data!

Expansion to the 
multivariate case 

possible

RCM observations

ARMA-GARCH: 
iid residuals

Ranks:

Copula, θ

marginalmarginal
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joint density



u

v 

model data observations

For a fixed v the PDF gives the 
probability that the corresponding u 
takes a certain value 

u
model data

pseudo-
observations

v 

Assumption:

•The joint PDF of model data and 
observation is the same as that of model 
data and pseudo-observation (BC) 

•Pseuodo-obs. can be constructed from 
the PDF and therefore from the Copula! 



Algorithm for a conditional 
simulation of (X,Y)

• calculate

• create random samples of v under the 
condition u using

• use                          to calculate a 
sample of model values y 

( )Xu F x=

1( )YF v y− =

marginal distribution FX(x) fitted with 
a Pareto distribution

( , ) ( , )C u v P V v U u
u

∂ = ≤ =
∂

• based on the conditional CDF there 
is a range of possible values for the 
variable y

Conditional CDFs for the whole range of data



• now for each u in the time series a random 
sample is drawn from the conditional CDF 

conditional CDFs for different values of u

( )P V v≤

• the corresponding y-values are derived 
using the inverse marginal CDF 

1( )YF v y− =

number of sampled value

number of sampled value

sampled value

sampled value



Results
before ARMA-
GARCH

after ARMA-
GARCH

perfect positive 
dependence

independence

remaining positive 
dependence for high ranks

Laux, P., Vogl, S., Qiu, W., Knoche, H. R., and Kunstmann, H. (2011): 
Copula-based statistical refinement of precipitation in RCM simulations 
over complex terrain, HESS D 8, 3001–3045, 2011.

K-plots of time series 
before and after 
ARMA-GARCH 
transformation



Uncond. Pseudo-observations

Laux, P., Vogl, S., Qiu, W., Knoche, H. R., and Kunstmann, H. (2011): 
Copula-based statistical refinement of precipitation in RCM simulations 
over complex terrain, HESS D 8, 3001–3045, 2011.



Weather classification - an improvement?

Directionof advection 
(700 hPa)

40 predefined types of weather classes
CP1 ...............................CP40

Cyclonality
950 hPa and 500 hPa)

Humidity
of troposphere

northeasterly southeasterly

southwesterlynorthwesterly

AA AC

CA CC

dry

wet

Bissouli and Dittmann, (2001)

For each group of weather types a theoretical 
Copula model is estimated separately



Dependence on large scale-weather situation

different advection types

cyclonality

humidity types

Laux, P., Vogl, S., Qiu, W., Knoche, H. R., and Kunstmann, H. (2011): 
Copula-based statistical refinement of precipitation in RCM simulations 
over complex terrain, HESS D 8, 3001–3045, 2011.

Marginal distributions for 
different weather conditions



Empirical Copula densities

cyclonality

humidity

Laux, P., Vogl, S., Qiu, W., Knoche, H. R., and Kunstmann, H. (2011): 
Copula-based statistical refinement of precipitation in RCM simulations 
over complex terrain, HESS D 8, 3001–3045, 2011.



uncond advec cyclo humi

obs 0.36 0.43 0.45 0.37

Pearson Correlation coefficients

Probability plots for different cond. simulations

Conditioning on cyclonity 
gives the best result

Laux, P., Vogl, S., Qiu, W., Knoche, H. R., and Kunstmann, H. (2011): 
Copula-based statistical refinement of precipitation in RCM simulations 
over complex terrain, HESS D 8, 3001–3045, 2011.



Possible improvement

1

1
θ

τ
≈

−

θ is not constant over the 
range of data

τ is not constant over the 
range of data



Spatial application
Using radar 
fields for 
copula-based 
spatial 
interpolation of 
gauge-data

Radar Hohenpeißenberg

Field of pseudo-observations

Geographisches Kolloquium: 11.07.2011

Wei Qiu

Copula based Precipitation Estimation by 
combining Gauge-, Radar, and 
Microwave link observations



Future work

�Compare the results of the new 
approach with traditional methods 
of bias correction

�Extension to (0,1) and (1,0), and 
(0,0) - case

�Develop a copula that is tailored 
to the particular needs of 
hydrological/meteorological data 
such as precipitation, temperature 
etc. 

�Expand the bivariate to the 
multivariate case


