

Analytisches Windparkmodell

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

Meteorological phenomena effecting energy generation from the wind (yields and loads)

phenomenon	effect on yield	effect on loads
vertical wind profile	increase with growing hub height	increase with growing hub height
shear layers (inversions)		differential loads
low-level jets	nocturnal maxima	nocturnal maxima
extreme winds	shut-down of turbines	extreme loads, immediate damages
extreme winds turbulence intensity	shut-down of turbines higher yields reduced wake lengths	extreme loads, immediate damages higher loads

frequency of LLJ over Hanover for 20 months in the years 2001 to 2003

total is 23.17% of all nights

circulation types:

BM ridge over Central Europe

- HB high over British Isles
- HM high over Central Europe

HFZ high over Scandinavia HNFA high over North Atlantic

"efficiency" of a circulation type to produce a LLJ over Hanover for 20 months in the years 2001 to 2003

"Grosswetterlagen" (European circulation type)

Wind parks

what happens when turbines are close together? ...

5 16.03..2011

ahead of the next turbine in a wind park

- more turbulence

Wind energy generation is based on momentum (energy) extraction from the air

momentum extraction decelerates the wind

- → (1) wind park efficiency depends on the equilibrium wind speed in the interior of the park
 - equilibrium between extraction and re-supply of momentum
- → (2) wind park wakes influence other wind parks downstream
 - wake length is inversely proportional to the momentum re-supply

➔ for wind park design it is important to know: 1) the magnitude of wind speed reduction in the park interior 2) the length of wakes

1) the magnitude of wind speed reduction in the park interior

basic idea of the analytical model

reduction of wind speed in the park interior (calculation of the equilibrium condition for the momentum fluxes)

 $c_{teff} u_h^2 = \frac{\kappa u_* z (u_0 - u_h)}{\Lambda_7 \phi}$

extraction = re-supply from above

turbine flux-gradient-relationship and surface drag

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

solution of the momentum extraction by the turbines analytical model surface roughness thermal layering of the PBL turbine-induced turbulence reduction of wind speed in the park interior (calculation of the equilibrium condition for the momentum fluxes): Р т

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

reduction of wind speed in the park interior

reduction of wind power in the park interior

reduction of wind **power** in the park interior measurements at Nysted wind park (Baltic sea)

Barthelmie R, Frandsen ST, Rethore PE, Jensen L., 2007: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proceedings of the European Offshore Wind Conference, Berlin 4.-6.12.2007.

2) the length of wakes

Karlsruhe Institute of Technology

basic idea of the analytical model

speed-up of wind speed downstream of a wind park:

$$\frac{\Delta u_{hn}}{\Delta t} = \frac{\kappa u_* z}{\Delta z^2} (u_{h0} - u_{hn})$$

speed-up = re-supply from above

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

solution of the momentum extraction by the turbines analytical model surface roughness thermal layering of the PBL turbine-induced turbulence speed-up of wind speed downstream of a wind park: $\frac{\mathcal{U}_{hn}(t)}{2}$ hn0 u_{h0}

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

recovery of wind speed (left) and power (right) behind a wind park, mean turbine density: 8 rotor diameters

onshore $(z_0 = 1.0 \text{ m}) - \text{offshore} (z_0 = 0.0001 \text{ m})$

unstable $(h/L_* = -1)$ – neutral – stable $(h/L_* = 1)$

speed-up of wind speed behind the wind park measurements (Envisat, SAR) at Horns Rev (4 km x 5 km)

http://www.hornsrev.dk/nyheder/brochurer/Horns_Rev_TY.pdf

25. 02. 2003

© ERS SAR/Risø http://galathea3.emu.dk/satelliteeye/ projekter/wind/back_uk.html

wind speed reduction: offshore stronger than onshore

(partial) compensation of higher offshore wind speed
offshore requires a larger distance between turbines

larger harvest from wind parks during unstable stratification

- ➔ offshore: annual cycle of energy production
- → onshore: diurnal cycle of energy production

offshore wake length is several times larger than onshore

→ offshore requires larger distances between wind parks

but, analytical model is strongly simplified

only for rough estimation, exact simulations with numerical models necessary

air directly over the water: air at hub height: after mixing: 5°C, more than 99% relative humidity -1°C, more than 99% relative humidity 2°C, above 101% humidity → clouds

Thank you for your attention

