

Dielectric and Structural Characterization of Codoped Ba_{0,6}Sr_{0,4}TiO₃ Thin Films for Tunable Passive Microwave Applications

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Institute for Applied Materials – Material Process Technology

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Outline

- Introduction
- Iron acceptor doping

 \rightarrow Processing of iron doped BST thin films

 \rightarrow Influence of iron doping on microwave properties

Iron/Fluorine co-doping

 \rightarrow Processing of iron/fluorine co-doped BST thin films

 \rightarrow Influence of iron/fluorine doping on microwave properties

Summary

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Introduction

Design and development Of materials/components for tunable, passive microwave applications

> Technologies to realize these components

- Semiconductor Technology
- Micro-Electro-Mechanical Systems (MEMS)
- Tunable Dielectrics

Requirements for materials for tunable microwave applications

- high tunability
- low dielectric loss
- low power consumption

⇒ (Ba,Sr)TiO₃ possesses high potential for the desired microwave applications

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Introduction

- $Ba_{0.6}Sr_{0,4}TiO_3$
 - Permittivity of the material depends on the applied electric field
 - \rightarrow Tunability τ
 - Displacement of the Ti⁴⁺ Ion due to the electric field

Florian Stemme

Institute for Applied Materials Material Process Technology

Electronic Materials and Applications 2012, Orlando, Florida

Thin Film Processing – Iron Dopant

RF Magnetron Co-Sputter Deposition

- RF sputtering power: 85W
- Sputtergas composition: 80 vol% Ar 20 vol% O₂
- Base pressure: < 10⁻⁶ mbar
- Operating pressure: 10⁻² mbar
- Thin films crystallization in a subsequent annealing process

Target

- 3" Co-Sputtertarget
- Ba_{0,6}Sr_{0,4}TiO₃; Kurt Lesker Ltd
- Ironfoil; Goodfellow GmbH
- Multilayer substrate; Inostec Inc.

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Electronic Materials and Applications 2012, Orlando, Florida

Material Process Technology

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Electronic Materials and Applications 2012, Orlando, Florida

Material Process Technology

 \rightarrow Q-factor enhancement depends on the amount of iron acceptor dopant

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Electronic Materials and Applications 2012, Orlando, Florida

Institute for Applied Materials Material Process Technology

Florian Stemme

Electronic Materials and Applications 2012, Orlando, Florida

Summary

- Achieved iron/fluorine co-doping by combined RF magnetron cosputter deposition and subsequent annealing processes
- Enhanced quality factor Q due to iron acceptor dopant
- Proof of single charged defect complex
- Enhanced tunability due to fluorine co-doping

Karlsruhe Institute of Technology

Thanks to...

 Institute for Applied Materials – Material Process Technology, KIT
 H. Geßwein, M. Schroeder, J. R. Binder, M. Bruns

Institut f ür Physikalische Chemie I, Uni Freiburg M D Drahue R A Eichel

- M. D. Drahus, R.-A. Eichel
- Microwave Engineering, TU Darmstadt
 - M. Sazegar

Electronic Materials and Applications 2012, Orlando, Florida

Florian Stemme