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B Advanced cladding alloys (e.g. M5®, ZIRLO™) exhibit excellent
mechanical and corrosion properties during operation till high burnup

B But, at high temperature, existing during LOCA and
severe accidents, strong oxidation occurs, causing: [
a Cladding degradation fuel
m Hydrogen release element
m Energy release

B Possible atmospheres:
a Steam
= Air

a Nitrogen

= Mixtures of them

B Fukushima
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Basics — chemical reactions MT
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Basics — phase diagrams
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Basics — kinetics
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Oxidation in steam (oxygen) MT
LT T g e

B Most LOCA and SFD codes use parabolic oxidation correlations
(n=1/2)

Zro,

Zr(0)
precipitates

prior B-Zr a-Zr(0)

1200 °C, quench 1600 °C, quench
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Oxidation in steam (oxygen) MT
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B Deviations from parabolic kinetics at temperatures <1100°C

26 700 °C . .
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Breakaway oxidation
— Loss of protective properties of oxide
scale due to its mechanical failure.

W Breakaway is caused by phase
transformation from pseudo-stable
tetragonal to monoclinic oxide and
corresponding density change.

® Critical times and oxide thicknesses for 7 y
breakaway strongly depend on type of & T
alloy and boundary conditions (ca. 30 min
at 1000°C and 8 h at 600°C).

W During breakaway significant amounts of
hydrogen can be absorbed (>40 at.%,
7000 wppm) due to local enrichment of H,
in pores and cracks near the metal/oxide
boundary (“hydrogen pump”).
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Secondary hydriding during LOCA MT
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® Hydrogen enrichment near burst

position was already observed e.g. by mmr -
ANL (NUREG/CR-6967) and is one
reason for the re-evaluation of the - E—

LOCA embrittlement criterion
® Mechanism:
(1) enhanced oxidation of inner clad
surface after rupture
(2) enrichment of hydrogen in the gap
between cladding and pellets
(3) absorption of hydrogen through non-
oxidized inner clad surface
New results with neutron methods
obtained in the framework of the

recent QUENCH-LOCA program Neutron radiography and tomography
of hydrogen bands near burst position
after QUENCH-LO bundle test
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Oxidation in atmospheres containing nitrogen ﬂ

Late phase after RPV failure

B Air ingress reactor core, spent fuel pond, or

transportation cask @f

~
B Nitrogen in BWR containments (inertization) and Hh 'ﬂﬂ FEae
ECCS pressurizers o e

B Prototypically following steam oxidation and mixed Mid loop operation
with steam

Qpen RPV lid

B Consequences: (WP

= Significant heat release causing temperature [Mﬂ
runaway from lower temperatures than in steam

= Strong degradation of cladding causing early loss of
barrier effect

m High oxygen activity influencing FP chemistry and
transport

24.01.2012 Martin Steinbriick

KIT-IAM-AWP



Consequences of air ingress for cladding MT

1 hour at 1200°C in steam . 1 hour at 1200°C in air

I Loss of barrier effect ofE-
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Mechanism of air oxidation

| Diffusion of air through
imperfections in the oxide scale
to the metal/oxide boundary

B Consumption of oxygen

B Remaining nitrogen reacts with
zirconium and forms ZrN

B ZrN is re-oxidized by fresh air
with proceeding reaction
associated with a volume
increase by 48%

®» Formation of porous and non- 1 — initially formed dense oxide ZrO,
protective oxide scales 2 — porous oxide after oxidation of ZrN
3 —ZrO, / ZrN mixture
4 — a-Zr(O)
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Reaction of ZrO, with nitrogen MT
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Influence of pre-oxidation (PO) in steam on subsequent
reaction in air and nitrogen ﬂ("
LT T g e

Example: Zry-4, 1200°C

otective effect

175 min N,
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Oxidation of Zr alloys in various atmospheres

Reaction of Zry-4 in Kinetic rate law Relative reaction rate, a.u.

N, parabolic
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N, after pre-oxidation in O, linear

10

N, with oxygen-stabilized a-Zr(0O) linear
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0,, H,0 parabolic

100

Air after pre-oxidation in O, parabolic
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Air linear

150
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Oxidation in mixed atmospheres

/ Zry-4, 1 hour at 1200°C

k H,O

Strong effect of nitrogen on oxidation and
degradation

mixtures containing nitrogen
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Influence of inert gases

W Inert gases like argon and helium are
often used as carrier or reference gases
in experiments simulating nuclear
accidents.

® They have only insignificant influence on
oxidation kinetics as long as the oxide
scale is dense and oxidation is
determined by diffusion of oxygen through
the ZrO, lattice.

B Inert gases may influence oxidation in
case of porous oxide layers (breakaway,
air oxidation), determined by gas phase
diffusion through pores and cracks.
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Nitrogen acts like a catalyst (NOT like an inert gas)

Enhanced hydrogen source term by oxidation in

. T=1100°C
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Conclusions MT
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B The usually applied parabolic oxidation kinetics are, strictly speaking,
only valid at temperatures above 1000°C and for fast transients (with
fast passing of the breakaway region).

® Breakaway has to be taken into account for slow transients and long
duration scenarios at medium temperatures (600-1000°C).

B Nitrogen is not an inert gas under the conditions of a nuclear accident.

® Zirconium nitride ZrN is formed when (1) oxygen is absent in the
atmosphere and (2) oxygen is present in the solid phase.

B The use of inert gases in simulation experiments for nuclear accidents
may have an effect on the results.
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Phase diagram Zr - O
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Phase diagram Zr - O AT
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Phase diagram Zr -
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Reaction of a-Zr(O) with nitrogen

1200 °C, 6.5 wt% O
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