

W Laminate

<u>J. Reiser</u>¹, M. Rieth¹, B. Dafferner¹, A. Hoffmann² W workshop, Santa Barbara, 13.02.12 – 15.02.12

¹ Karlsruhe Institute of Technology, Institute for Applied Materials, IAM-AWP, 76021 Karlsruhe, Germany ² PLANSEE Metall GmbH, 6600 Reutte, Austria

KARLSRUHE INSTITUTE OF TECHNOLOGY, INSTITUTE FOR APPLIED MATERIALS

www.kit.edu

→ pure W is the best W (in terms of ductility measured by Charpy)

How to make tungsten ductile?

particle reinforced MMC [1]

J. Hohe, IWM, Fraunhofer-Institut, Freiburg

short fiber reinforced (random) MMC [2]

J. B. Correia, IST, Portugal

unidirectional fiber reinforced MMC [3]

J.-H.You, IPP, Garching

multi-layer MMC laminate material

M. Rieth, *J. Reiser*, IAM, KIT

Literature:

- [1] J. Hohe, P. Gumbsch, J. Nucl. Mater. 400 (2010) 218.
- [2] V. Livramento, D. Nunes, J.B. Correia, P.A. Carvalho, R. Mateus, K. Hanada, N. Shohoji, H. Fernandes, C. Silva, E. Alves, Tungsten-tantalum composites for plasma facing components, Materials for Energy 2010, ENMAT2010, 4-8 July 2010, Karlsruhe, Germany.
- [3] J. Du, T. Höschen, M. Rasinski, S. Wurster, W. Grosinger, J.-H. You, Comp. Sci. Tech. 70 (2010) 1482.

Charpy impact properties

Source of ductility!

Source of ductility?

- movement of dislocations (edge (0.3 eV), screw (1.05 eV))
- twinning
- nano crystalline effects: grain rotation, grain boundary sliding, grain boundary dislocation interaction or grain rotation and alignment [1]
- dislocation annihilation

Literature:

[1] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mat. Sci. 51 (2006) 427.

How to improve ductility?

How to improve ductility? Grain size

the smaller the grain size, the higher the ductility

How to improve ductility? Deformation

the higher the degree of deformation, the higher the ductility

Literature:

[1] P.B. Hirsch, S.G. Roberts, J. Samuels, *Revue Phys. Appl.* 23, 409 (1988).

How to improve ductility? Foil effect

100 µm

the 'foil effect': dislocation annihilation on the free surface

 $20 \ \mu m$ aluminum foil

J. Hirsch, Hydro Aluminium Deutschland GmbH - R&D

W0.1, 1h/2200℃

2200 °C 100μm 1 0.02.2012 J. Reiser, IAM-AWP, KIT W workshop, Santa Barbara

Assessment of W foil

Analyses of W foil: grain size 50µm RT 1h/ 50µm 2700 ℃

Analyses of W foil (as-received): grain size

grain size: 0.5 x 3 x 15 μm³

17 10.02.2012 J. Reiser, IAM-AWP, KIT W workshop, Santa Barbara

Analyses of W foil: texture

Analyses of W foil: texture

David Armstrong, Oxford

Analyses of W foil: TEM

W0.1, as-received

20

200 nm W0.1, 20 h / 1400 °C Yi Xiauuo, Oxford

5.0 K N.2.7.7

10.02.2012

J. Reiser, IAM-AWP, KIT W workshop, Santa Barbara

21 10.02.2012 J. Reiser, IAM-AWP, KIT W workshop, Santa Barbara

Mo foil, 0.1 mm, RT

W foil, 0.1 mm, 600 ℃

- anisotropic
- most ductility in 45° direction
- same material behavior in 0° and 90° direction

22 10.02.2012 J. Reiser, IAM-AWP, KIT W workshop, Santa Barbara

W foil, 0.1 mm, RT

W foil, 0.1 mm, 600℃

- texture: (100) <110>
- preferred slip: <111>
- W foil, 0.1 mm, grain size: 0.5 x 3 x 15 μ m³

3PB test at RT: W0.1

annealing: 1h 3PB at RT 0°

10.02.2012 W workshop, Santa Barbara

3PB: the barriers

annealing temperature in [°C]

Thank you for your attention

The authors are grateful to:

Plansee Metall GmbH University of Oxford our colleagues from IAM (KIT)