Comparative Study of Micro Powder Injection Molding (µPIM) and Simultaneous Micro Powder Injection Compression Molding (µPICM)

<u>E.Honza</u>, M.Kruchem, V.Piotter, K.Plewa Karlsruhe Institute of Technology (KIT) elvira.honza@kit.edu

Outline of the talk

- I. Introduction and Motivation
- II. Injection Compression Molding
- III. Performing of simultaneous Micro Powder Injection Compression Molding ($\mu ext{-PICM}$)
- IV. Reproduction of micro structures by simultaneous μ -PICM
- V. Investigation of sequential μ-PICM
- VI. Summary and Outlook

Introduction and Motivation

Advantages of Injection Compression Molding (ICM):

Processing:

- > Reduction in injection pressure, clamping force and cycle time
- > Uniformly acting holding pressure
- > Compensates shrinkage by compressing the melt by clamping movement
- > Less material shear

Molded parts:

- ➤ Minimization/elimination of sink marks and warpages
- > For long-fiber-reinforced thermoplastics: reduction of fiber degradation in parts
- > For transparent parts: improvement of dimensional accuracy thus optical properties

E. Honza - Comparative Study of $\mu\text{-PIM}$ and $\mu\text{-PICM}$

Introduction and Motivation

Motivation

 \succ Flaws due to incomplete filling at $\mu\text{-PIM}$

> Design of the ICM process for powder material and investigation of the influence on accuracy reproduction of micro structure by use of design of experiments (DoE)

Injection Compression Molding (ICM)

Versions of Injection Compression Molding Process

Coining axis	Main axis
	Secondary axis
	Combined main and secondary axes
Direction of coining	Clamping coining
	Opening coining
	Combined opening/closing coining
Temporal sequence	sequential
	simultaneous

Source: T.Walther, U.Mueller, "Optical parts (2)" Kunststoffe International 11/2009

Performing of Simultaneous Micro Powder Injection Molding (µ-PICM)

- Mold with shearing edgesCommercial injection molding machine (ARBURG® Allrounder 420C)
- > Machine control allows for individual programming of $\mu\text{-PIM}$ and $\mu\text{-PICM}$
- ➤ Design of Experiments (DoE): full two-level four-factorial (24)

Process parameter	Low level	High level
Compression force [kN]	200	400
Compression speed [mm/s]	1	3
Compression starting time [s]	0.5	0.7
after injection of feedstock		
Holding time [c]	1	2

Other process parameters	
Tool temperature [°C]	75
Injection speed [mm/s]	95
Hold pressure [bar] for µ-PIM	750
Hold time [s] for µ-PIM	2.2
Cooling time [s]	30

Performing of Simultaneous Micro Powder Injection Molding ($\mu\text{-PICM}$)

 \succ Tool insert with $\underline{\text{micro structures}}$ produced by LIGA (Lithography, Electroplating and Molding)

➤ <u>Feedstock</u>: yttria stabilized zirconium powder (TZ-3YS-E) with binder system (Polyethylen, wax, stearic acid)

Performing of Simultaneous Micro Powder Injection Molding (μ -PICM)

- Investigation of replication quality especially in the area with micro structures of high aspect ratio
- > Qualitative rating by use of binary evaluation and arithmetic average of each structure
- ➤ Influence of the position of micro structure (near and far to the gate)

E. Honza $\,$ - Comparative Study of $\mu\text{-PIM}$ and $\mu\text{-PICM}$

Reproduction of micro structures Optimum process parameters of DoE for simultaneous μ-PICM Compression force [kN] 400 Compression starting time [s] 0.5 Holding time [s] 2

Reproduction of micro structures Comparative analysis between μ-PIM and simultaneous μ-PICM (optimum process parameters) show marginal improvement of the replication Increasing of the significant parameters at μ-PICM: compression force (600kN) and compression speed (6mm/s) Comparison between μ-PIM and simultaneous μ-PICM: Increasing of the significant parameters at μ-PICM: compression force (600kN) and compression speed (6mm/s) Increasing of the significant parameters at μ-PICM: compression force (600kN) and compression speed (6mm/s) Increasing of the significant parameters at μ-PICM: compression force (600kN) and compression speed (6mm/s) Increasing of the significant parameters at μ-PICM: compression force (600kN) and compression speed (6mm/s) Increasing of the significant parameters at μ-PICM: Increasin

Investigation of sequential µ-PICM

- > Machine, mold, structured insert and feedstock unchanged
- ➤ DoE: full two-level four-factorial (24)

Process parameter	Low level	High level
Compression force [kN]	400	600
Compression speed [mm/s]	3	6
Compression gap [mm]	0.6	1.1
Holding time [s]	1	2
noiding time [S]	1	2

Other process parameters				
Tool temperature [°C]	75			
Injection speed [mm/s]	95			
Cooling time [s]	30			

> Significant influence: compression force

Summary and Outlook

- \succ Successful implementation of the simultaneous $\mu\text{-PICM}$
- $\,\succ\,$ First significant process parameters were appointed
- \succ Obvious improvement of micro structure near to the gate with $\mu\text{-PICM}$
- $\begin{tabular}{ll} \hline \succ \underline{Future:} & \text{further optimization of simultaneous μ-PICM} \\ & \text{(variothermal processing)} \\ \hline \end{tabular}$

