

			Ph ⁴⁵ B ⁱ⁵⁵	ПТНШМ	WATER	
Melting Point at 0.1 MPa		[°C]	125	180.5	0	
Boiling Point at 0.1 MPa		[°C]	2516	1317	100	
			300 °C	300 <i>°</i> C	25°C	
Density	ρ	[kg/m ³]	10325	505	1000	
Heat Capacity	\mathbf{c}_{ρ}	[J/(kgK)]	146.33	4279	4180	
Kinematic Viscosity	ν	[m2/s] · 10 ⁻⁷	1.754	9	9.1	
Heat Conductivity	λ	[W/(m K)]	12.68	29.2	0.6	
Electric Conductivity	σ_{el}	$[\text{A/(V m)}] \cdot 10^5$	8.428	33.5	2 · 10-4 (tap)	
Thermal Expansion Coefficient	α	[K ⁻¹] · 10 ⁻³	6.7	43.6	6	
Surface Tension	σ	[N/m] · 10 ⁻³	410	421	52 (tap)	

Envisaged Reynolds number for TBM Re = some 100 in accordance with MHD calculations of L. Bühler, KIT							
	PICOLO 22 cm/s	PICOLO 10 cm/s	PICOLO 1 cm/s	TBM 0.1 cm/s			
Reynolds Re= u _{fl} d _{hyd} /v _{fl}	22 * 0.8 / 0.105 * 10 ⁻² = (17.6 /10.5) *10 ⁴ = 16,800	10 * 0.8 / 0.105 * 10 ⁻² = (8 /10.5) *10 ⁴ = 7,620	1 * 0.8 / 0.105 * 10 ⁻² = (0.8 /10.5) *10 ⁴ = 762	0.1 * 3.25 / 0.105 * 10 ⁻² = 0.325/10.5 * 10 ⁴ = 310 100 <re<1000< td=""></re<1000<>			
	turbulent	Main part turbulent	laminar	laminar			
Schmidt Sc = v_{fl} / D	0.105 * 10 ⁻² / 1,185 * 10 ⁻⁶ = 860	= 860	= 860	= 860			
Sherwood numbe corrections have	er for laminar flow to consider the Gr	in Picolo is assum aetz number:G =	ed to be 3.66 "Inle = Re Pr d / I	,n			

