

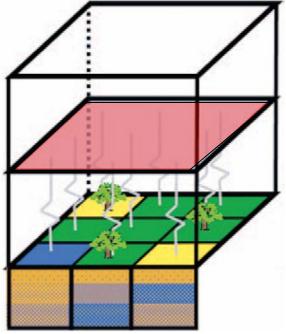
Environmental response functions - relating eddycovariance flux measurements to ecosystem drivers

S. Metzger^{1,2,3}, W. Junkermann², M. Mauder², K. Butterbach-Bahl², B. Trancon y Widemann⁴, S. Wieneke², H.P. Schmid², and T. Foken³

- (1) National Ecological Observatory Network, Fundamental Instrument Unit, Boulder, U.S.A (smetzger@neoninc.org)
- (2) Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen, Germany
- (3) Bayreuth University, Department of Micrometeorology, Bayreuth, Germany
- (4) Bayreuth University, Chair of Ecological Modeling, Bayreuth, Germany

www.kit.edu

Motivation


- Bridging scales: Regional measurements
- Fixed wing aircraft: Wide range, but expensive
- Unmanned aircraft: Flexible, but limited payload
- Alternative?

© Agriculture and Agri-Food Canada

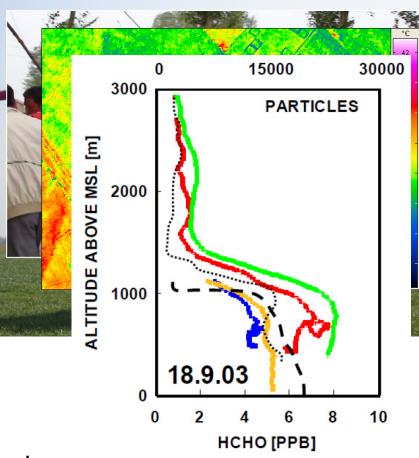
2

© British Antartic Survey

Mengelkamp et al. (2006)

Environmental response functions - relating eddy-covariance flux measurements to ecosystem drivers Stefan Metzger (smetzger@neoninc.org) National Ecological Observatory Network Fundamental Instrument Unit

Weight-shift microlight aircraft

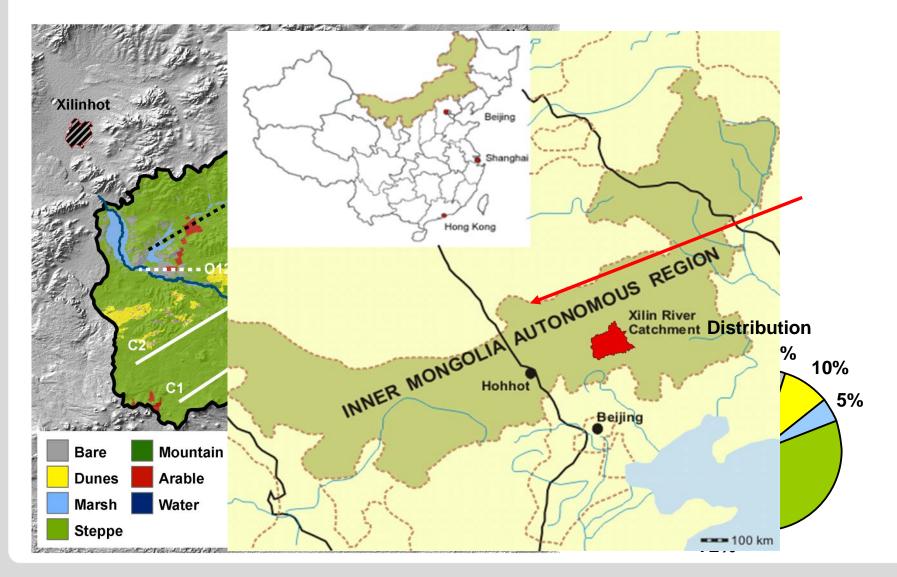


Easy transport and certification

- Existing sensor package
 - Surface imagery
 - Aerosols and radiation

Eddy Covariance Fluxes?

$$F = \overline{w'c'}$$

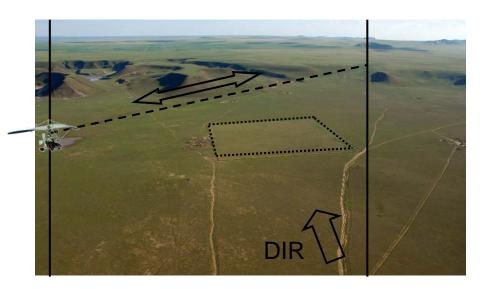

High ratio of climb rate / true airspeed

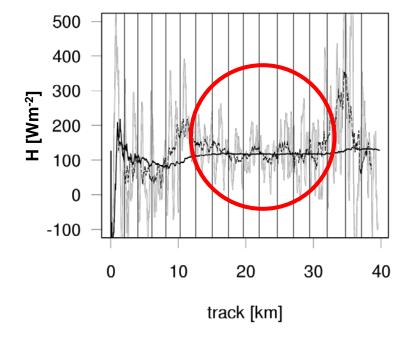
Environmental response functions - relating eddy-covariance flux measurements to ecosystem drivers

National Ecological Observatory Network Fundamental Instrument Unit

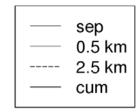
Spatially representative flux measurements

Environmental response functions - relating eddy-covariance flux measurements to ecosystem drivers Stefan Metzger (smetzger@neoninc.org)


4


National Ecological Observatory Network Fundamental Instrument Unit

What is the spatial resolution of aircraft measurements?



- flight altitude 50 m above ground
- 2 km flight legs downwind of 400 x 400 m Stipa C3
- Stipa flux signal resolved during stationary condition

5

Environmental response functions - relating eddy-covariance flux measurements to ecosystem drivers

National Ecological Observatory Network

F_m: surface feature flux (regressor)

M: number of surface feature classes

N: number of flux samples

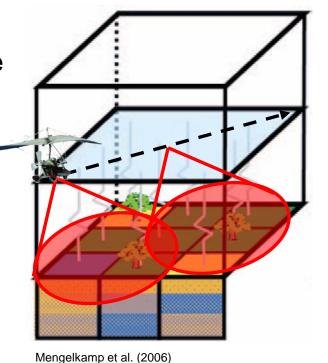
C_{nm}: source weight

F_n: measured flux (regressand)

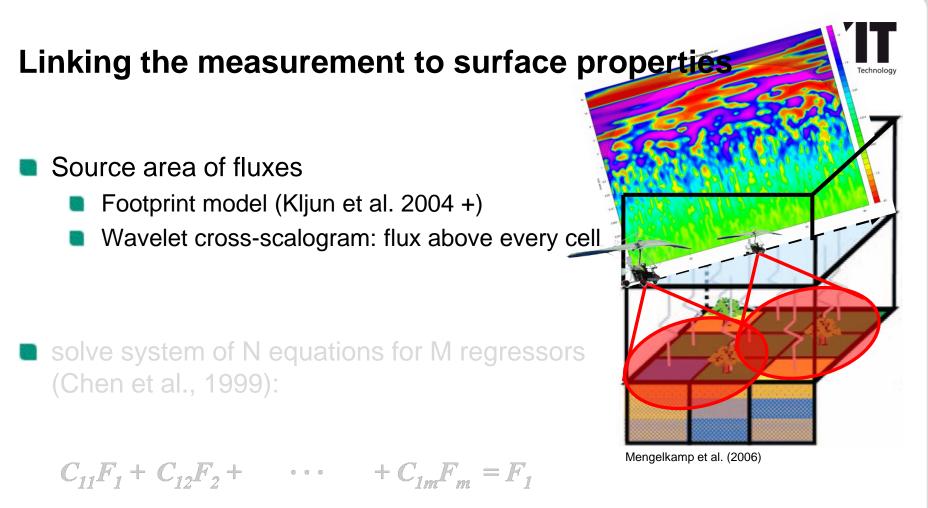
Fundamental Instrument Unit

Linking the measurement to surface properties

Measured flux is linear combination of surface feature contributions


solve system of N equations for M regressors (Chen et al., 1999):

$$C_{11}F_{1} + C_{12}F_{2} + \cdots + C_{1m}F_{m} = F_{1}$$


$$C_{21}F_{1} + C_{22}F_{2} + \cdots + C_{2m}F_{m} = F_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$C_{n1}F_{1} + C_{n2}F_{2} + \cdots + C_{nm}F_{m} = F_{n}$$

 $+C_{2m}F_m = F_2$

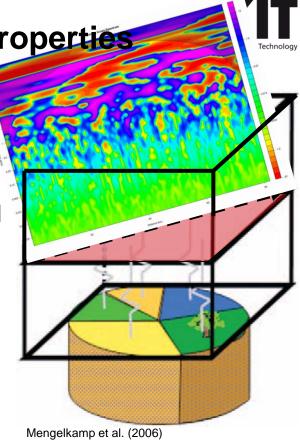
 $+C_{nm}F_m=F_n$

N: number of flux samples M: number of surface feature classes F_n : measured flux (regressand) C_{nm} : source weight F_m : surface feature flux (regressor)

 $C_{21}F_1 + C_{22}F_2 +$

 $C_{n1}F_{1} + C_{n2}F_{2} +$

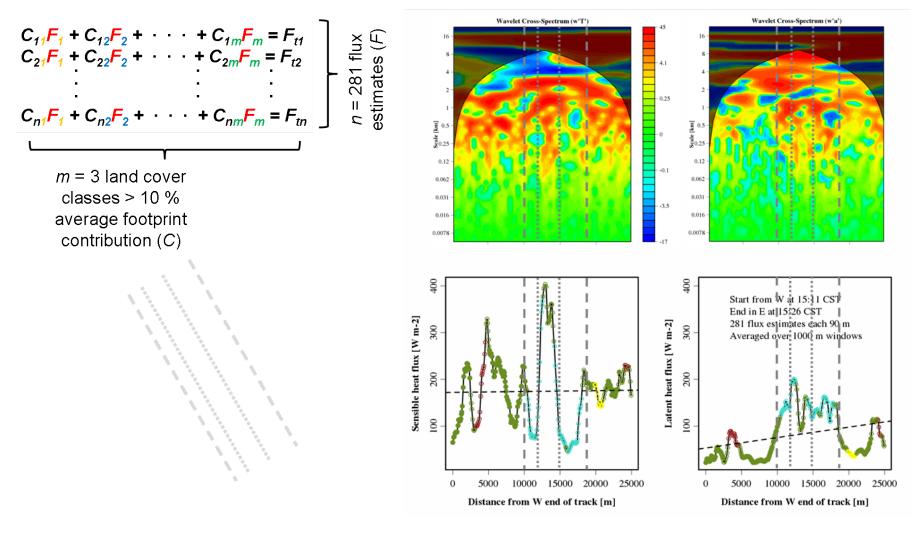
Linking the measurement to surface properties


Source area of fluxes

8

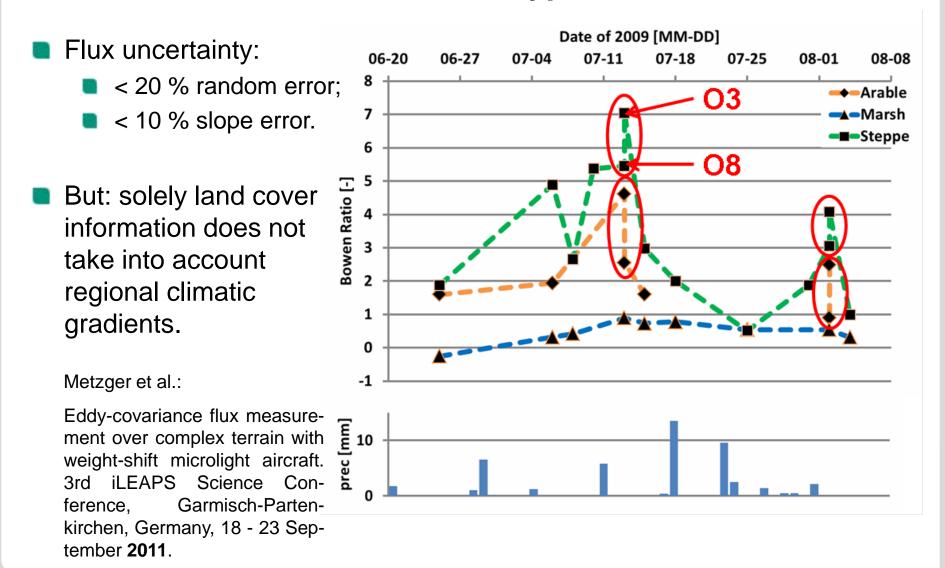
- Footprint model (Kljun et al. 2004 +)
- Wavelet cross-scalogram: flux above every cell

solve system of N equations for M regressors (Chen et al., 1999):


 $C_{11}F_{1} + C_{12}F_{2} + \cdots + C_{1m}F_{m} = F_{1}$ $C_{21}F_{1} + C_{22}F_{2} + \cdots + C_{2m}F_{m} = F_{2}$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $C_{n1}F_{1} + C_{n2}F_{2} + \cdots + C_{nm}F_{m} = F_{n}$

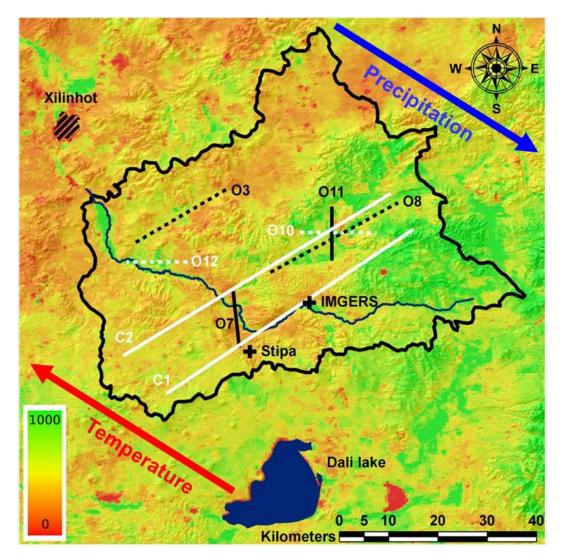
N: number of flux samples M: number of surface feature classes F_n : measured flux (regressand) C_{nm} : source weight F_m : surface feature flux (regressor)

'Tile' fluxes for flight on 2009-06-25



9

Bowen ratio of three land cover types



Improvements: MODIS data products as proxy for climatic gradients

- Enhanced vegetation index: moisture sources (r≈0.5)
- Land surface temp.: sensible heat sources (r≈0.3)
- Bi-weekly update, 250 m
 1000 m resolution
- Continuous characterization of land surface

Agreement for 40 flights, 8466 eddy-covariance measurements

Environmental response functions – amalgam or gold?

Enables...

- ...scalability of results;
 - …assess comparability of measurements from different platforms.

To do…

- ...time-frequency analysis: wavelet cone of influence? → Empirical mode decomposition (Huang et al., 1998);
- ...accuracy of footprint modeling? \rightarrow Large eddy simulations;
- Image: ...non-linear environmental response functions? → Multiple layers of information, support vector machines (Cortes & Vapnik, 1995).
- Outlook...
 - ...application to tower measurements using AOP land surface data;
 - …intercomparison and site representativeness.

Acknowledgements

- Project initiation & engineering by J. M. Burger, F. Neidl, R. Steinbrecher and R. Zuurbier, Karlsruhe Institute of Technology.
- Technical assistance by J. Bange, A. van den Kroonenberg, Eberhard Karls University Tübingen.
- German ground based measurements by F. Beyrich, U. Rummel and U. Weisensee, German Meteorological Service.
- Stipend funding by the German Academic Exchange Service, Helmholtz Association of German Research Centrers, China Scholarship Council, European Union and the National Ecological Observatory Network.
- Funding of flight campaign in Inner Mongolia by the German Research Foundation, research group 536 'Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate'.
- Feedback and infrastructure by H. Loescher, H. Luo, E. Ayres, J. Taylor, M. Gebremedhin, National Ecological Observatory Network.

Environmental response functions - relating eddy-covariance flux measurements to ecosystem drivers 14 Stefan Metzger (smetzger@neoninc.org)

Environmental response functions - relating eddycovariance flux measurements to ecosystem drivers

S. Metzger^{1,2,3}, W. Junkermann², M. Mauder², K. Butterbach-Bahl², B. Trancon y Widemann⁴, S. Wieneke², H.P. Schmid², and T. Foken³

- (1) National Ecological Observatory Network, Fundamental Instrument Unit, Boulder, U.S.A (smetzger@neoninc.org)
- (2) Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen, Germany
- (3) Bayreuth University, Department of Micrometeorology, Bayreuth, Germany
- (4) Bayreuth University, Chair of Ecological Modeling, Bayreuth, Germany

www.kit.edu