Analysis of the absorbed hydrogen in cladding tubes applied in the QUENCH-LOCA tests

Mirco Grosse, Conrad Rössger, Juri Stuckert, Martin Steinbrück, Mario Walter, Michael Klimenkov, and Anders Kaestner

Content

- Introduction
- Results for samples of the QUENCH-L0 test
 - Neutron Imaging
 - XRD
 - TEM
 - mechanical Properties
- First glance to the neutron radiography investigations of QUENCH-L1 samples
- Conclusions
In the framework of the KIT QUENCH program design basis loss of coolant accidents (LOCA) and severe accidents (accidents beyond LOCA) are simulated experimentally on fuel rod bundle scale in large scale tests.

Introduction

M. Billone et al. NUREG/CR-6967/ANL-07/04

Influence on mechanical properties?
Comparison of the temperature scenarios of QUENCH-L0 (commissioning test) and QUENCH-L1 (reference test)

Neutron imaging

X-ray radiography

neutron radiography

GKSS Geesthacht 1991

H/Zr ratio

CCD camera without filter
CCD camera with Be-filter
Image Plate
Results Radiography rod QL0-#15 ($p_i = 3$ bar)

$\Sigma = 0.215$,
Is in the range measured for not-oxidized Zry-4
($\Sigma = 0.197 .. 0.216$)

Results Radiography rod QL0-#03 ($p_i = 55$ bar, $\Delta t = 104$ s)
Results Tomography rod QL0-#01 ($p_i = 50$ bar, $\Delta t = 112$ s)

$X_{ct} \sim 2700$ wppm

Results Radiography rod QL0-#17 ($p_i = 40$ bar, $\Delta t = 71$ s)
Results Tomography QL0

Dependence of the maximal hydrogen concentrations in the hydrogen enriched bands on the time between burst and quenching

Results XRD QUENCH-L0

XRD pattern measured at the as-received state and two samples from the QUENCH-L0 test
Comparison with XRD pattern of a laboratory specimen

X-ray diffraction pattern of a laboratory sample cooled with lower cooling rate

Results TEM QUENCH-L0

as-received

inside the hydrogen enriched bands
Results tensile tests QL0

The rods do not show hydrogen bands fail after plastic deformation.

The rods containing hydrogen bands fail by double rupture in the hydrogen bands or by stress concentration at edges of the burst crack.

First glance to the results of n radiography of QL1 samples

#06

#08
First glance to the results of n radiography of QL1 samples

axial distribution of the total macroscopic neutron cross section

Summary and Conclusions (1)

- The secondary hydriding during LOCA was investigated by means of neutron imaging, XRD, TEM and mechanical tests.

- QUENCH-L0:
 - The hydrogen is enriched in bended bands oriented non-symmetric to the tube axis.
 - The extension of the hydrogen enriched bands and the maximal hydrogen concentration in it seems to depend on the time between bursting and quenching and on the temperatures during this time.
 - Maximal hydrogen concentrations of ~2600 ppm was determined. No hydrogen was found for \(\Delta t < 70 \) s.
 - No influence of inner pressure or crack length is obliviously.
 - Bragg peak shift observed in the XRD investigations give hints for a undercooled solution of hydrogen in the \(\alpha\)-Zr lattice.
 - Numerous inhomogeneities were found in the hydrogen enriched bands by means of TEM.
 - Strong influence of the hydrogen bands on the crack positions in the tensile tests.
Summary and Conclusions (2)

- **Quench-L1**
 - Hydrogen bands not clearly visible.
 - Different hydrogen distribution because of blockage after bending of the tubes.

Outlook:

Mechanical test at QUENCH-L1 will be performed soon.

Next QUENCH-LOCA test (L2) is planned for December 2012 using the same geometry and temperature scenario like QUENCH-L1 but with a bundle consist of fuel rod simulators with M5™ claddings.

Thanks

The QUENCH-LOCA tests and pre-test investigations are sponsored by the German Verein der Grosskraftwerksbetreiber **VGB**

KIT:
- The QUENCH team, particularly C. Goulet,
- J. Moch, C. Roessger

PSI:
- S. Hartmann

Thanks for your attention, questions?