

Short introduction to WP1: "Climate variability and seasonal prediction"

Patrick Laux

IINSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, GARMISCH-PARTENKIRCHEN, GERMANY

Overview of envisaged working tasks

- WT1.1: Quantification and predictability of climatic parameters affecting rice growth at sensitive development stages
- WT1.2: Long term regional climate simulations to study the impact of LUC/LCC on climate
- WT1.3: Quantification of climate induced uncertainties for future rice production in EA

Seasonal climate predictions: State-of-the-art

3

Problems for end-users:

- Sensitivity of crops to climatic variability is modulated at intraseasonal time scale and farmers mostly depend on local-scale climatic variability
- Tercile information not sufficient and no answers to intraseasonal issues

• Limited predictive skill:

almost no skill for JFM/AMJ, and moderate skill for OND

seasonal resolution may mask predictability if intraseasonal rainfall not matched the modulation of predictability

WT 1.1: Specific Objectives

- To analyze the intraseasonal modulation of predictable signals of rainfall jointly with the spatial coherency of the predictable signal (prerequisite for seasonal prediction)
- To quantify the predictability of extreme events which severely affect rice growth
- To analyze the predictability crucial intraseasonal features for different rice varieties at different spatiotemporal scales
 - Start of wet season to determine suitable planting windows for rice
 - Intraseasonal probabilities of dry spells
 - etc.

Methods

5

- 2-tiered forecast system (at IRI):
 - Forecasts of global tropical SSTs
 - Application for the suite of atmospheric models that respond to SST forcing
 - \rightarrow surface temperature and precipitation anomaly patterns
- Predictor screening (other than SST) for model improvement
- Statistical analysis to assess the level of predictability of predictand (jointly with coherency of the predictand)

0.5

0.4

0.1

Milestone: A prediction system ...

Institute of Meteorology and Climate Research

Milestone: ... accounting for vulnerability of rice (varieties) during development

Critical temperatures for the development of rice plant at different growth stages

	Growth stages	Critical temperature (°C)			
	roll objectives.	Low	High	Optimum	Vulnerability:
Uve	Germination	16–19	45	18–40	1-2 hours of high T
Opti	imize planting da	ates of rid	ce (var	ieties) to	avoid crop of
failu	re & stabilize for	od secur	itv ¹⁴⁵	31	grain sterility!
iane	Tillering	9–16	33	25–31	
	Initiation of panicle primordia	15	-	-	7
	Panicle differentiation	15-20	30	-	
	Anthesis	22	35–36	30–33	
	Ripening	12–18	> 30	20–29	

Yoshida, 1978

Assessing vulnerability also for water availability, radiation, ...

Overview of envisaged working tasks

- **WT1.1:** Quantification and predictability of climatic parameters affecting rice growth at sensitive development stages
- WT1.2: Long term regional climate simulations to study the impact of LUC/LCC on climate
- WT1.3: Quantification of climate induced uncertainties for future rice production in EA

Regional climate predictions: State-of-the-art

Rationale: High spatiotemporal resolution climate information required for agricultural impact studies (e.g. future rice productivity, future suitability areas for rice growing)

Problems for CC impact modelers:

• Description of the land surface not sufficient usually time-invariant, i.e. static LU maps

• Poor representation of lateral (subsurface and overland) fluxes: the process formulations of land surface schemes describe the vertical exchange of energy and water fluxes but no lateral transport is possible

Purely scientifically issue: RCMs do not explicitly account for the effects of the mixing ratios of greenhouse gases (GHGs) other than CO_2

WT 1.2: Specific Objectives

- To identify the spatial "target" resolution, i.e. to which resolution is DSS giving additional information for impact studies?
- To analyze the impact of GHG induced changes, separately for different greenhouse gases, and the impacts induced by LUC/LCC on climate
- To analyze the impacts of small scale lateral water fluxes at surface and subsurface on atmosphere, and thus, to analyze the feedback of LUC/LCC on precipitation patterns

Methods

1.) Regional Climate Modeling (WRF) to provide input e.g. for hydrological and agricultural impact studies

2.) Model improvement (lateral water and energy fluxes)

Soil-Vegetation AtmosphereTransfer Model

Explicit diffusive wave overland flow Explicit saturated subsurface flow ∆t≈ 6sec for

3.) Implementation dynamic LUC/LCC

• Supervised/unsupervised classification of RS imagery

• LUC/LCC scenarios

∆x≈100m

Milestone:

RCM simulations for EA with improved model compartments 30-year time slice from 1971-2000 (baseline) & two future periods (2021-2050, 2071-2100)

- \rightarrow using identified target resolution
- \rightarrow accounting for LUC/LCC & GHG induced changes
- \rightarrow accounting for lateral water and energy fluxes

Overall objectives:

Improved high resolution climate data for EA to provide more accurate data for RICE-EA impact modelers (hydrological and crop yield modelers) **Overview of envisaged working tasks**

- **WT1.1:** Quantification and predictability of climatic parameters affecting rice growth at sensitive development stages
- WT1.2: Long term regional climate simulations to study the impact of LUC/LCC on climate
- WT1.3: Quantification of climate induced uncertainties for future rice production in EA

CC/CV uncertainty estimation: State-of-the-art

Problems for end-users:

- DDS very expensive (computing resources)
 → Usually: 1 GHG scenario, 1 GCMs, 1 RCM
- Uncertainties increase with increasing modeling chain (GHG scenario, GCM, RCM, etc.)

WT 1.3: Specific Objectives

- Statistically downscale meteorological variables (P, T, R) using a multimodel & multi scenario approach
- To quantify uncertainties in deriving hydrometeorological variables important for rice production in EA arising from different GCMs, emission scenarios, and ESDS approaches
- To judge the probability of the RCM projection derived in WT1.2

Methods

- Different ESDS methods:
 - Expanded Downscaling (XDS, e.g. Bürger 1996, 2002)
 - Multi-Objective Fuzzy Rule-Based Classification (MOFRBC, Bárdossy, 1995)
- Statistical analysis of the ESDS results to derive PDFs of crucial variables for rice growth in EA for the past and future time slices
- EV Theory to assess probability (change) of rare events

Milestone:

17

Derive & provide RICE-EA partners with PDFs of crucial variables for rice growing in EA to be used for CC impact analysis

Overall objectives: Quantification of uncertainties for future rice production in EA related to the climate drivers

To be discussed

- Centralized Database for RICE-EA consortium
- Missing partner for supervised/unsupervised classification of RS imagery to derive LUC/LCC scenarios
- Suggestions for RCM simulations (GCM, GHG scenario, which time slices, etc.?)

