

Activities and first results of WP3 (Climate Research)

Patrick Laux, Johannes Cullmann, Dang Thinh, Maxime Souvignet

IINSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, GARMISCH-PARTENKIRCHEN, GERMANY

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Outline

Analysis of observation data

- ✓ Availability of data
- ✓ Historical trend analysis

Process-based Regional Climate Model simulations

- ✓ Motivation: WHY? and HOW?
- ✓ Introduction to WRF
- ✓ Preparation transient RCM climate simulations
- ✓ Work progress

Further activities

- ✓ Analysis LUC on climate ("what-if" scenarios)
- ✓ Statistical Downscaling

Availability Observation Data

12

13

14

15

16

SonTan

TraMy

TienPhuoc

KhamDuc

Hien (Trao)

108.03

108.3

108.25

107.78

107.65

15.57

15.48

15.33

15.43

15.59

53

58

135

393

420

1976-2009

1977-2009

1977-2009

1978-2009

1978-2009

1977-2009

Historical Trend Analysis (P, T_{min}, T_{max}, R)

Precipitation Trends in % (1980-2009)

ID	Station	Sen's slope [mm/year]		
		1980-1989	1990-1999	2000-2009
1	AiNghia	-127*	117	116
2	CauLau	-73	64	98
3	GiaoThuy	-103	14	54
4	HoiAn	-59	49	19
5	TamKy	-116	203*	77
6	CamLe	-121+	145	NA
7	QueSon	-115	82*	-219
8	NongSon	-148*	175*	35
9	HoiKhach	-114*	NA	60
10	DaNang	-101	59+	32
11	ThanhMy	-103*	189*	4
12	SonTan	-128+	129+	79
13	TienPhuoc	-69	166*	NA
14	TraMy	-126	112	111
15	KhamDuc	-200	140	190
16	Hien (Trao)	-286**	34	146

Decadal Rainfall Variability

 $C_V = \frac{\sigma}{\mu}$

Motivation: why do we need process-based RCM simulations?

- Sparse observation network of hydrometeorological data
 - Few hydrometeorological stations (located in lowlands)
 - Low sampling rates (daily)
- Stakeholders demand delineation of climate change adaptation strategies
 - Flood protection measures (adaptation of infrastructure)
 - Future hydropower potential (low flows)
 - > Water availability for agriculture
- → High resolution spatial and temporal distribution of future hydrometeorological variables (P, T, etc.)

Motivation: why do we need RCM simulations?

JAN 1960

22

20 18

16

14

12

98 100 102 104

D02

D03

D01 **ERA40-**25°N D02 WRF 20°N D03 15°N 10°N 5⁰N 0° **APH** 115°E 95°E 100°E 105°E 110°E

1000

900

100

800 700 600 500 400 300 200

Institute of Meteorology and Climate Research

How to derive Regional Climate Projections?

WRF (<u>Weather Research and Forecast Model</u>)

Atmospheric compartment

Horizontal exchange Next generation atmospheric modeling system between columns of momentum, heat **Developed at NCAR** and moisture Successor of the Mesoscale Model 5 (MM5) Various applications: ✓ Weather forecasts Vertical exchange between layers \checkmark (Long-term) climate simulations ✓ Different scales Atmospheric and (sub)surface

compartments:

Atmosphere – explicit calculation of

WRF – (sub)surface compartment

Surface and subsurface compartment Unified Noah Land Surface Model \geq Lower boundary: SVAT-model for (Pan and Mahrt, 1987; Chen et al., 1997; Chen and Dudhia, 2001, Ek et al., 2003) surface and subsurface water budgets Canopy Water Transpiration Evaporation Turbulent Heat Flux to/from Snowpack/Soil/Plant Canopy Joint atmospheric-terrestrial water \succ Precipitation Condensation 011 budget calculations Deposition/ vegetation Sublimation Direct Soil to/from Evaporation snowpack Evaporation from Open Water Runoff on bare Snowmelt soil Soil Heat Flux $\Delta Z = 10 \text{ cm}$ Soil Moisture $\Delta Z = 30 \text{ cm}$ Flux Soil Ice & Frozen Soil Processes Internal Soil Internal Soil $\Delta Z = 60 \text{ cm}$ Interflow Heat Flux Moisture Flux $\Delta Z = 100 \text{ cm}$ Gravitational Flow

Model Equations NOAH LSM

Institute of Meteorology and Climate Research

WRF Modeling System

Preparation RCM Simulations: HPC Environment

- Peak performance using 128 CPUs
- Depends on CPUs, Compiler (options), but also WRF setup

WRF Setup

Domain1:

- horizontal: 99 x 99 grid points with a resolution of **45 km**
- vertical: 50 layers up to 5000 Pa
- time step: 180 s

Domain2:

- horizontal: 142 x 145 grid points with a resolution of **15 km**
- vertical: 50 layers up to 5000 Pa
- time step: 120 s

Domain3:

- horizontal: 66 x 75 grid points with a resolution of **5 km**
- vertical: 50 layers up to 5000 Pa
- time step: 40 s

WRF results strongly depend on subgridscale parameterizations

Comparison Parameterization Runs: P

Systematic WRF Experiments: Focus on P

- 12 Combinations using 3 MP, 2 PBL and 2 CU schemes
- 2 Combinations using NCEP & ERA40 Reanalyses
- \rightarrow 2 x 12 = 24 WRF simulation for 2000

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
I	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
K	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

Validation ERA40-WRF 2000 Experiments: P

Validation NCEP-WRF 2000 Experiments: P

Validation WRF 2000 Experiments: T2

Final Decision (based on simulated T, P)

ERA40 Reanalysis

- Lower bias in T
- Higher pattern correlation of P (summer)

Run	Microphysic schemes	PBL physic schemes	Cumulus physic schemes
В	Lin et al.	Hong et al.	Betts-Miller-Janjic
С	Lin et al.	Nakanishi and Niino	Betts-Miller-Janjic
D	Lin et al.	Nakanishi and Niino	New SAS
E	Lin et al.	Hong et al.	New SAS
F	WRF Single-Moment 3-class	Hong et al.	Betts-Miller-Janjic
G	WRF Single-Moment 3-class	Nakanishi and Niino	Betts-Miller-Janjic
Н	WRF Single-Moment 3-class	Hong et al.	New SAS
1	WRF Single-Moment 3-class	Nakanishi and Niino	New SAS
J	WRF Double-Moment 6-class	Hong et al.	Betts-Miller-Janjic
Κ	WRF Double-Moment 6-class	Nakanishi and Niino	Betts-Miller-Janjic
L	WRF Double-Moment 6-class	Nakanishi and Niino	New SAS
Μ	WRF Double-Moment 6-class	Hong et al.	New SAS

ERA40-WRF vs. OBSERVATIONS D1 (P, T2)

Different Reference Datasets: P

Thank you for your attention

GCMs with Different Resolutions

Quelle: IPCC-AR4-WG1 (2007)

Climate Modeling: Looking into the Future...

Maximum Temperature (1980-2009)

Deviations (absolute values)

besser

CRU critique

20.02.2012

