

Creep Of Steel P92 In Stagnant Lead And Air At 650°C

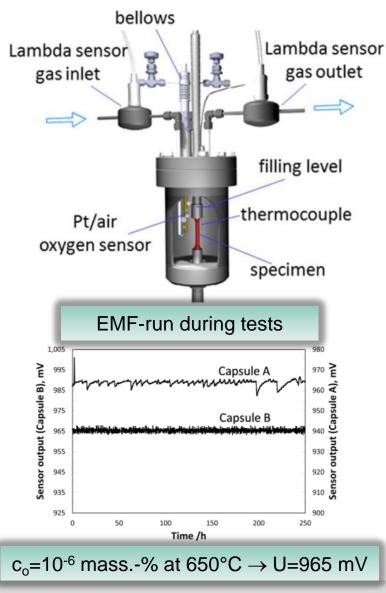
Mariya Yurechko,

Carsten Schroer, Aleksandr Skrypnik, Olaf Wedemeyer and Jürgen Konys

INSTITUTE FOR APPLIED MATERIALS - MATERIAL PROCESS TECHNOLOGY | CORROSION DEPARTMENT

- 9%-Cr f/m steel as a candidate for application in next generation of nuclear reactors
- Creep-to-rupture equipment for HLM
- Results:
 - Creep-to-rupture tests in air and Pb at 650°C
 - Post-exposure study of P92 tested in Pb and air
- Conclusion, Outlook

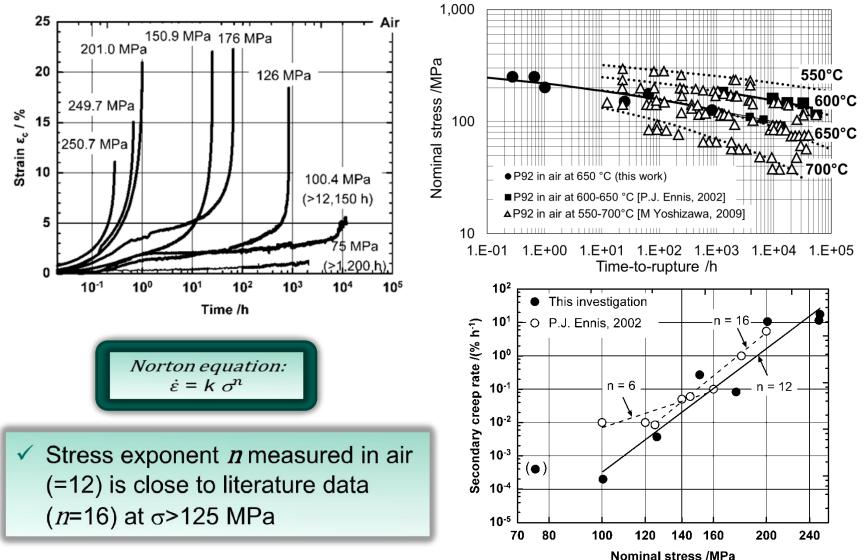
9%-Cr f/m steel as a candidate for application in next generation of nuclear reactors



T91														
Fe	Cr	Мо	Mn	Si	V	Ni	Nb	Cu	ΑΙ	С	ľ	N	Ρ	S
bal	8.99	0.89	0.38	0.22	0.21	0.11	0.06	0.06	.0146	.1025	.04	142	.021	.0004
HT: normalising at 1050°C and tempering at 770°C														
P92	= NF6	616												
P92 Fe	= NF6 Cr	616 Mo	W	Mn	Si	V	Ni	Nb	AI	С	N	Ρ	S	В
			W 1.75	Mn 0.43	Si 0.26	V 0.2	Ni 0.12	Nb 0.06			N .043	P .018		B .002

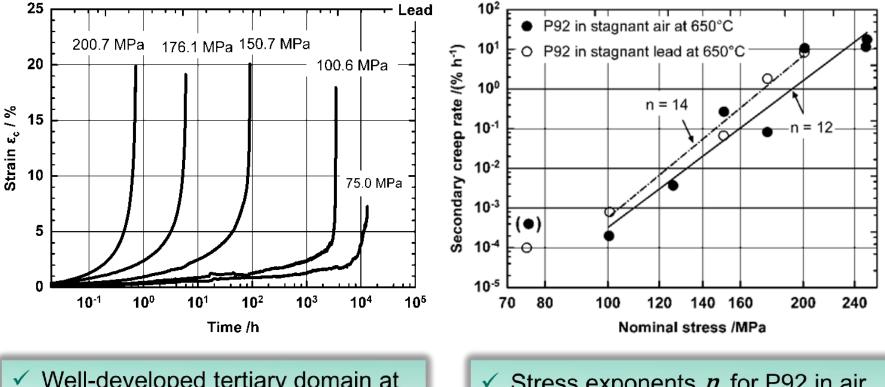
 Increase of creep strength in P92 is reached due to W additions and decrease of Mo-content in comparison to T91.

Creep-to-rupture equipment for HLM


Displacement transducer outside the capsule

 Five capsules with liquid lead (900 ml)
Three capsules with air (230 ml) for reference tests

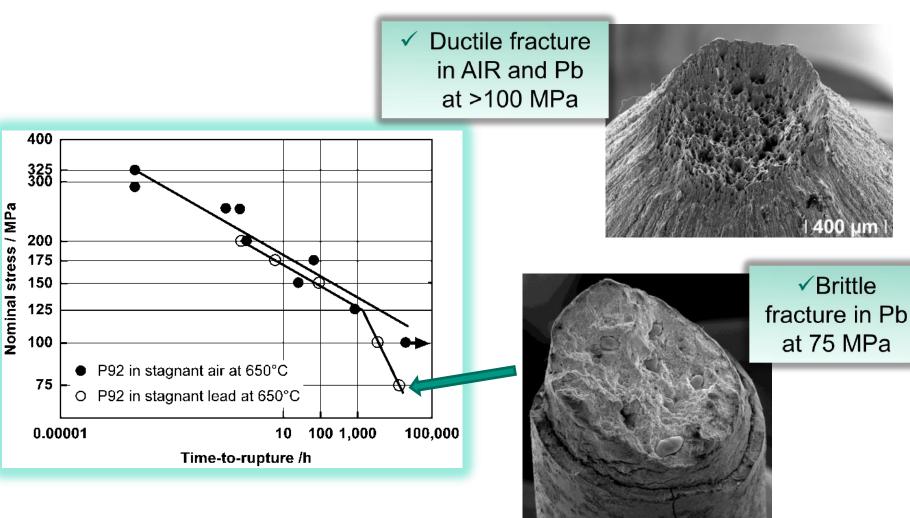
Creep-to-rupture tests in air at 650°C



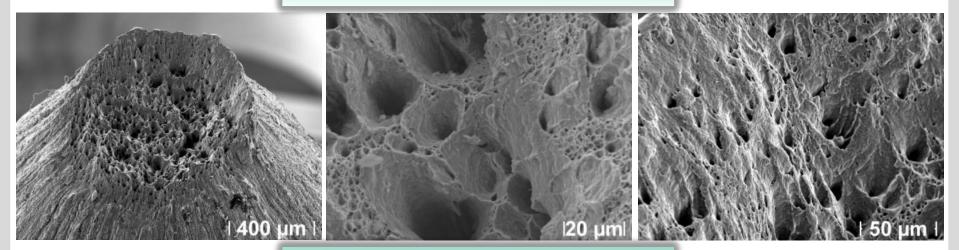
5 10-4

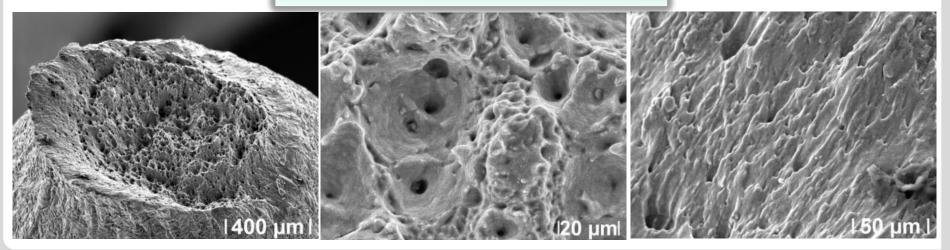
10² 10³ 10⁻¹ 10⁰ 10¹ 10⁴ Time /h

 Well-developed tertiary domain at >100 MPa and less pronounced at 75 MPa.

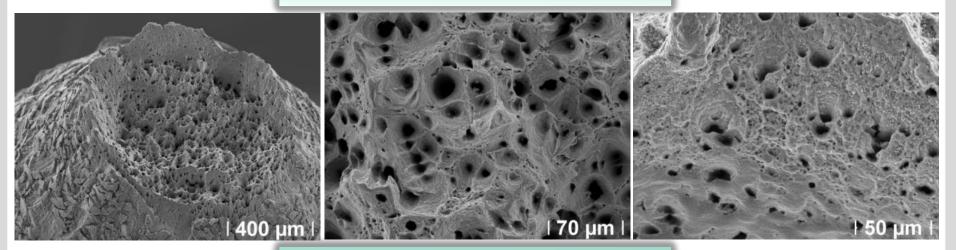

Creep-to-rupture tests in Pb at 650°C

 \checkmark Stress exponents *n* for P92 in air and in Pb are 12 and 14, respectively, at σ >100 MPa

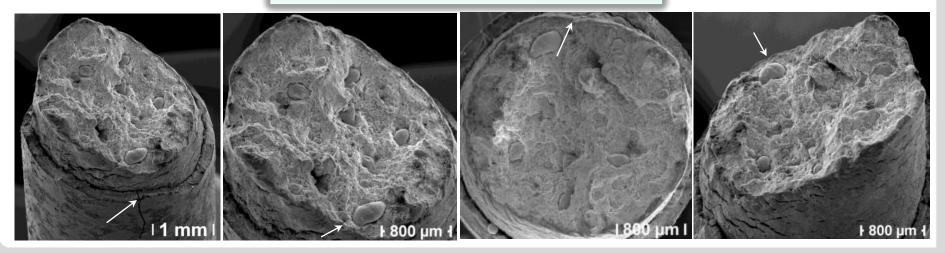

Creep-to-rupture tests in Pb and air at 650°C


11 mm

✓ P92 in air at 125 MPa



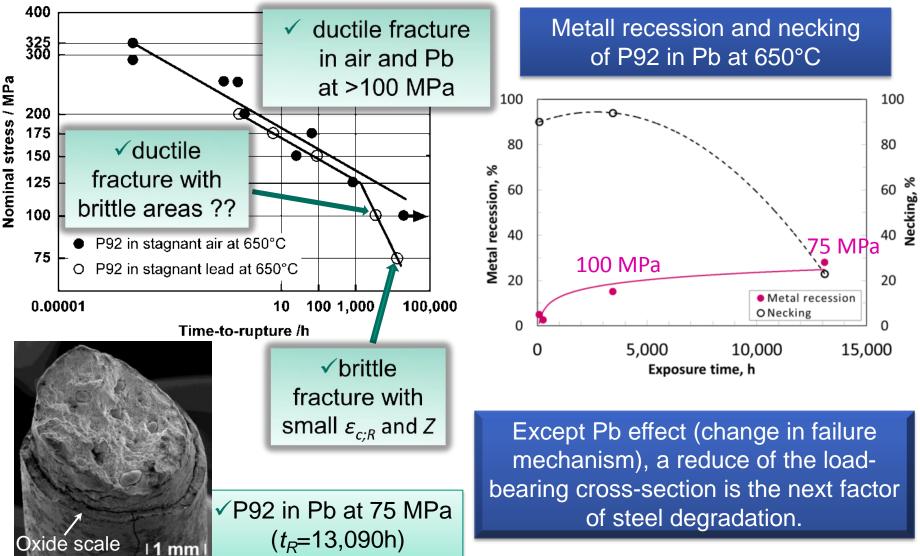
✓ P92 in air at 325 MPa

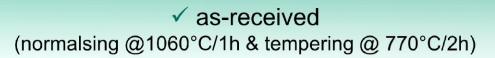


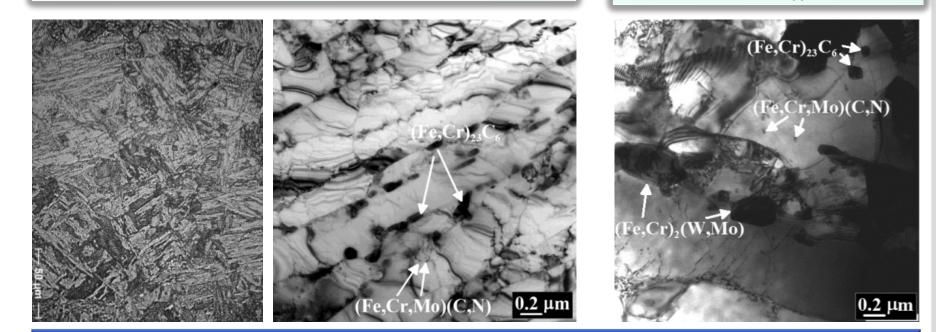
✓ P92 in Pb at 150 MPa

✓ P92 in Pb at 75 MPa (LME)

✓ Creep-to-rupture characteristics of P92 at 650°C

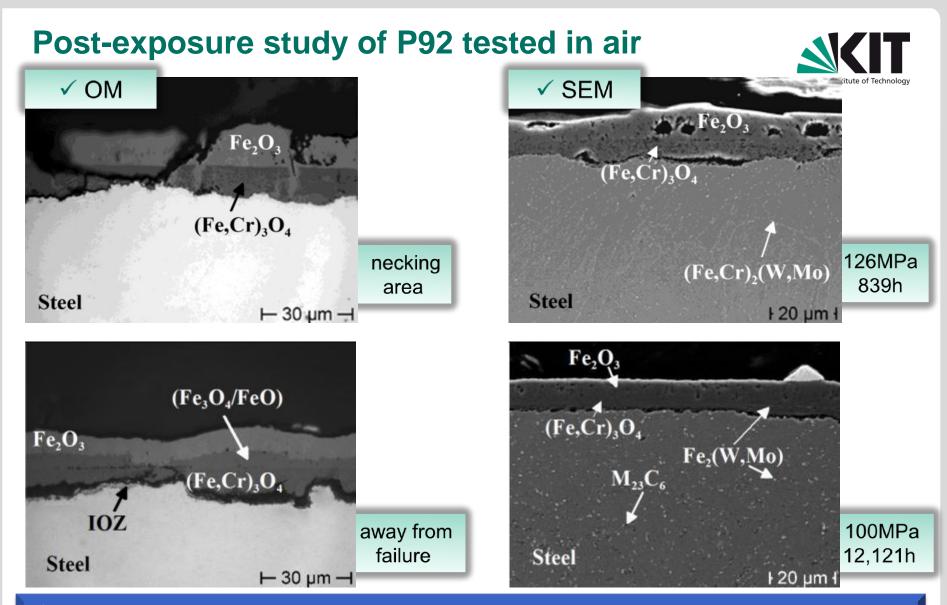

	n stayn	an						
σ MPa	t _R h	^ɛ c:R Z %		έ _{c,s} %/h	t _{1,2} h	t _{2,3} h		
325.5	0	20	83	-	-	-		
290.3	0.017	31	89	-	-	-		
250.7	0.3	20	90	17.68	0.083	0.12		
249.7	0.68	21	86	11.63	0.217	0.33		
201.0	1.0	31	90	10.68	0.317	0.65		
176.0	65.5	28	89	0.083	5.133	37.4		
150.9	25.1	31	91	0.270	1.933	12.4		
126.0	839.1	23	83	0.004	147.2	610		
100.4*	>12,150	-	-	0.0002	337.8	-		
75.5*	>1,104	-	-	0.0004	81.5	-		
* Test was stopped before rupture								


in stagnant air


✓ in stagnant Pb

σ MPa	t _R h	€ _{c;R} %	Z %	έ _{c,s} %/h	t _{1,2} h	t _{2,3} h	
200.7	0.73	23	92	8.4034	0.183	0.23	
176.1	5.97	16	89	1.8241	1.05	2.73	
150.7	90.0	18	90	0.0670	18.67	46.78	
100.6	3,442	27	94	0.0008	597.6	2477	
75.0	13,090	13	23	0.0001	1276	6363	

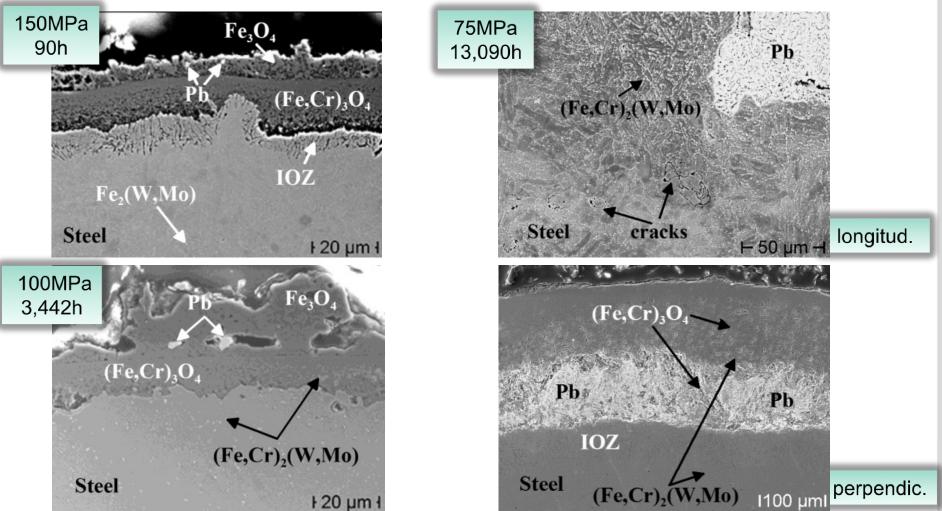
- ✓ In stagnant air. $\varepsilon_{c,R}$ and Z are in ranges of 20-31% and 83-91%, respectively.
- ✓ In stagnant Pb: at >100MPa $\varepsilon_{c;R}$ and Z are similar to that in air. At 75MPa they are much smaller.



✓ after rupture in Pb

@75MPa and t_R =13,090h

Independent of the medium:


- ✓ martensitic laths increased in size.
- \checkmark M₂₃C₆ carbides and MX carbo-nitrides coarsen with aging time;
- the Laves phase precipitates at grain boundaries during exposure and grows with time.

 \checkmark Coarsening of Laves phase due to Ostwald ripening.

✓ Formation of Fe_2O_3 in $(Fe,Cr)_3O_4$ in the necking area. Formation of an oxide layer with a higher Fe-content on top of $(Fe,Cr)_3O_4$ away from the failure.

Infiltration of Pb in the oxide scale along cracks in short-term tests.
Pb-Penetration in the inward growing oxide layer and steel in long-term tests.

Conclusion

- ✓ Negligible effect of liquid Pb (in comparison to oxidation in air) on creep strength at >125 MPa and 650°C.
- Long exposure time (slow secondary creep at low stresses) favors LME in steel exposed to Pb.
- The next decisive factor (resulted in ductile fracture): Loss of load-bearing cross-section due to oxidation.
- Coarsening of Laves phase in long-term tests introduces the 3rd degradation process in long-term experiments.

Outlook

 Additional tests – to separate clearly the effects. The focus on long-term tests or low sresses.

Acknowledgment

Thanks to D. Szabó, H. Geswein, T. Weingaertner and M. Fotouhi
Arkadani (KIT) for technical contribution.

 Funding by the EURATOM 7th Framework Programme withing crosscutting project GETMAT is gratefuly acknowledged.