



# Ground-based remote sensing of the atmospheric boundary layer for wind energy site assessment

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association





## wind energy-related phenomena



3



#### Surface/mixing layer height influences diurnal variation of vertical wind profiles



14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





#### Surface/mixing layer height influences diurnal variation of vertical wind profiles



4 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





### Low-level jet



14.06.2

5

~ . ~





#### Nocturnal low-level jet and the turning of wind direction with height









surface pressure 00 GMT

26 June 2005

asterisk denotes location where LLJ was observed

Institute for Meteorology and Climate Research – Atmospheric Environmental Research





frequency of LLJ over Hanover for 20 months in the years 2001 to 2003

total is 23.17% of all nights

#### circulation types:

BM ridge over Central Europe
HB high over British Isles
HM high over Central Europe

HFZ high over Scandinavia HNFA high over North Atlantic

"efficiency" of a circulation type to produce a LLJ over Hanover for 20 months in the years 2001 to 2003

8

"Grosswetterlagen" (European circulation type)



### **Relevance for wind energy**



#### The vertical wind profile (equilibrium conditions)

logarithmic law<br/>(with stability correction) $u(z) = (u_*/\kappa) (\ln(z/z_0) - \psi(z/L_*))$ power law $u(z) = u(z_A) (z/z_A)^n$ New proposal<br/>(Gryning et al. 2007) $u(z) = \frac{u_{*0}}{\kappa} \left( \ln\left(\frac{z}{z_0}\right) + \frac{z}{L_{MBL,N}} - \frac{z}{z_i} \left(\frac{z}{2L_{MBL,N}}\right) \right)$ needs information on the PBL or mixing-layer height

Gryning, S.-E., E. Batchvarova, B. Brümmer, H. Jørgensen, S. Larsen, 2007: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound.-Lay. Meteorol., **124**, 251–268.

Peña, A., S.-E. Gryning, C.B. Hasager, 2010: Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor. Appl. Climatol., **100**, 325-353.

#### LLJ can only be described by time-dependent equations!



subject of this lecture

#### **Basic remote sensing techniques**



| RADARbackscatter, electro-magnetic pulses, fixed profilingscanning, slantedactive, monostaticSODARbackscatter, acoustic pulses, fixed waveprofilingfixed, slanted, verticalactive,<br>usually monostaticLIDAR<br>ceilometerbackscatter, optical pulses, fixed waveprofilingscanning, fixed, horizontal,<br>slanted, verticalactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, verticalactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, verticalactive, bistatic or passiveFTIRabsorption, infrared, spectrumpath-averagingfixed, horizontal, slantedactive, bistatic or passiveDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave length(s)averaging, profilingfixed, scanning, slanted,<br>verticalpassivetomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, monostatic | name                | princple                                                   | spatial resolution      | direction                                         | type                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------|-------------------------|---------------------------------------------------|-----------------------------------------|
| SODARbackscatter, acoustic pulses, fixed wave<br>lengthprofilingfixed, slanted, verticalactive,<br>usually monostaticLIDAR<br>ceilometerbackscatter, optical pulses, fixed wave<br>length(s)profilingscanning, fixed, horizontal,<br>slanted, verticalactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, verticalactive, monostaticPTIRabsorption, infrared, spectrumpath-averagingfixed, horizontal, slantedactive, bistatic or passivePTIRabsorption, optical, fixed wave lengthspath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave length(s)active; gassivepassivepassiveradiometryelectro-magnetic, fixed wave length(s)averaging, profilingfixed, horizontalactive, multiple emitters and<br>receiverstomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                                                       | RADAR               | backscatter, electro-magnetic pulses, fixed wave length    | profiling               | scanning, slanted                                 | active, monostatic                      |
| LIDAR<br>ceilometerbackscatter, optical pulses, fixed wave<br>length(s)profilingscanning, fixed, horizontal,<br>slanted, verticalactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, verticalactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, horizontal, slantedactive, monostaticRASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthpath-averagingfixed, horizontal, slantedactive, bistatic or passiveFTIRabsorption, infrared, spectrumpath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, bistaticDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, multiple emitters and<br>receiverstomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                           | SODAR               | backscatter, acoustic pulses, fixed wave length            | profiling               | fixed, slanted, vertical                          | active,<br>usually monostatic           |
| RASSbackscatter, acoustic, electro-magnetic,<br>fixed wave lengthprofilingfixed, verticalactive, monostaticabsorption, infrared, spectrumpath-averagingfixed, horizontal, slantedactive, bistatic or passiveFTIRemission, infrared, spectrumpath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, bistaticprofilingelectro-magnetic, fixed wave length(s)averaging, profilingfixed, scanning, slanted,<br>verticalpassivetomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                                                                                                                                                                                                                                                                                                                                              | LIDAR<br>ceilometer | backscatter, optical pulses, fixed wave length(s)          | profiling               | scanning, fixed, horizontal,<br>slanted, vertical | active, monostatic                      |
| absorption, infrared, spectrumpath-averagingfixed, horizontal, slantedactive, bistatic or passiveFTIRemission, infrared, spectrumpath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, bistaticradiometryelectro-magnetic, fixed wave length(s)averaging, profilingfixed, scanning, slanted,<br>verticalpassivetomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RASS                | backscatter, acoustic, electro-magnetic, fixed wave length | profiling               | fixed, vertical                                   | active, monostatic                      |
| FTIRemission, infrared, spectrumpath-averagingfixed, horizontal, slantedpassiveDOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, bistaticradiometryelectro-magnetic, fixed wave length(s)averaging, profilingfixed, scanning, slanted,<br>verticalpassivetomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | absorption, infrared, spectrum                             | path-averaging          | fixed, horizontal, slanted                        | active, bistatic or passive             |
| DOASabsorption, optical, fixed wave lengthspath-averagingfixed, horizontalactive, bistaticradiometryelectro-magnetic, fixed wave length(s)averaging, profilingfixed, scanning, slanted,<br>verticalpassivetomographytravel time, acoustic, fixed wave lengthhorizontal distributionfixed, horizontalactive, multiple emitters and<br>receivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FTIR                | emission, infrared, spectrum                               | path-averaging          | fixed, horizontal, slanted                        | passive                                 |
| radiometry electro-magnetic, fixed wave length(s) averaging, profiling fixed, scanning, slanted, passive vertical tomography travel time, acoustic, fixed wave length horizontal distribution fixed, horizontal active, multiple emitters and receivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DOAS                | absorption, optical, fixed wave lengths                    | path-averaging          | fixed, horizontal                                 | active, bistatic                        |
| tomography travel time, acoustic, fixed wave length horizontal distribution fixed, horizontal active, multiple emitters and receivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | radiometry          | electro-magnetic, fixed wave length(s)                     | averaging, profiling    | fixed, scanning, slanted, vertical                | passive                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tomography          | travel time, acoustic, fixed wave length                   | horizontal distribution | fixed, horizontal                                 | active, multiple emitters and receivers |

stefan.emeis@kit.edu Institute for Meteorology and Climate Research -Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing Atmospheric Environmental Research





#### Frequencies for atmospheric remote sensing



Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

11 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

### Surface-based Remote Sensing Systems

#### at IMK-IFU



#### SODAR (Large system),

WINDFORS Wind Energy Research Allian

acoustic backscatter, Doppler shift analysis → wind, turbulence

SODAR-RASS (Doppler-RASS), acoustic, electro-magnetic backscatter, determines speed of sound → wind and temperature profiles







Ceilometer, backscatter, optical pulses, wave length ~ 0.9 µm → aerosol profiles

**Wind-LIDAR,** optical backscatter, Doppler shift analysis, wave length ~ 1.5  $\mu$ m  $\rightarrow$  wind and

aerosol profiles



image: Halo Photonics

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





# SODAR

## wind, turbulence, mixing-layer height, low-level jets





#### monostatic SODAR: measuring principles





#### deduction:

- sound travel time backscatter intensity Doppler-shift
- heightturbulence
- = wind speed

Emission of sound waves into three directions:

in order to measure all three components of the wind (horizontal and vertical)





#### SODAR sample plot (daytime convective BL)



**15** 14.06.2012

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





#### SODAR sample plot (lifted inversion)



**16** 14.06.2012

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research



#### Algorithms to detect MLH from SODAR data













Monthly mean diurnal course of wind speed



#### August 2002, 17 nights with LLJ







#### Mean diurnal variation of the turning of wind direction with height









# Ceilometer

## mixing-layer height





### **Ceilometer/LIDAR measuring principle**



detection:

travel time of signal backscatter intensity Doppler-shift

- = height
- = particle size and number distribution
- = line-of-sight wind speed

wind-LIDAR only, cannot be analyzed from ceilometer data

#### Wind Energy Research Allianc cenometer sample plot (daytime convective BL)



#### optical backscatter intensity



#### negative vertical gradient of optical backscatter intensity



WINDFORS

stefan.emeis@kit.edu Institute for Meteorology and Climate Research -Atmospheric Environmental Research

### Algorithm to detect MLH from Ceilometer-Daten



criterion

WINDFORS Wind Energy

minimal vertical gradient of backscatter intensity (the most negative gradient)





#### Different gradient methods (see Sicard et al. 2006, BLM 119, 135-157)





#### comparison of two different ceilometers



#### LD40

two optical axes wave length: 855 nm height resolution: 7.5 m max. range: 13000 m

CL31 / CL51

one optical axis wave length: 905 nm height resolution: 5 m max. range: 7500 m







### comparison of LD40 and CL31





Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





# RASS

# wind, turbulence, temperature, mixing-layer height

28 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





### **RASS** measuring principle



detection:

travel time of em./ac. signal ac. backscatter intensity ac. Doppler-shift em. Doppler shift

- = height
  - = turbulence
- = line-of-sight wind speed
- = sound speed → temperature

(identical to SODAR) (identical to SODAR)



#### **RASS: frequencies**



#### Bragg condition: acoustic wavelength = $\frac{1}{2}$ electro-magnetic wavelength



Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

30 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research







SODAR-RASS (Doppler-RASS)

### (METEK)

acoustic frequ.: 1077 Hz radio frequ.: 474 MHz resolution: 20 m lowest range gate: ca. 40 m

vertical range: 540 m



32



## example RASS data: summer day potential temperature (left), horizontal wind (right)







## example RASS data: winter day potential temperature (left), horizontal wind (right)





34



#### example RASS data: inversion potential temperature (left), horizontal wind (right)







**RASS (radio-acoustic remote sensing)** 

#### **Bragg-RASS: windprofiler plus acoustic component**

**Doppler-RASS: SODAR plus electro-magnetic component** 

**UHF RASS (boundary layer)** 

VHF RASS (troposphere)





# Doppler windlidar

## wind, turbulence, mixing-layer height, low-level jet





### Doppler windlidar measuring principle



detection:

travel time of signal backscatter intensity depolarisation Doppler-shift

- = height
- = particle size and number distribution

= particle shape

= wind speed in the line of sight





#### mobile Doppler windlidar from Halo Photonics



 38
 14.06.2012
 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing
 stefan.emeis@kit.edu
 Institute for Meteorology and Climate Research – Atmospheric Environmental Research



**39** 14.06.2012

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research









# Comparisons between different instruments

### temperature profile and aerosol backscatter



## comparison of RASS data (potential temperature, right) with aerosol backscatter from a ceilometer (left)

CL31 Augsburg AVA log $_{10}$  of backscatter with MLH on 01.03.2009 in 10<sup>-9</sup> m<sup>-1</sup> sr<sup>-1</sup>



stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research



#### Detection of the diurnal variation of PBL structure from SODAR and Ceilometer data taken in Budapest





Emeis, S., K. Schäfer, 2006: Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound.-Lay Meteorol., 121, 377-385,





44 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research



**45** 14.06.2012

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing

stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





# Summary

46 14.06.2012 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research





○ ○ ○ ● RASS delivers temperature profiles, wind profiles are additionally available.
 MLH directly from temperature profiles. LLJ from wind profiles.
 <u>Does not work properly</u> under high wind speeds. Restricted range.

○ ○ ● ◆ wind lidar detects wind profiles, aerosol distribution and water droplets.
 It has to be assumed that the aerosol follows the thermal structure of the atmosphere and the wind.

MLH from aerosol backscatter, wind speed variance, LLJ from wind profiles. <u>Does not work properly</u> in extreme clear (aerosol-free) air and during precipitation events and fog.

Set Ceilometer detects aerosol distribution and water droplets. It has to be assumed that the aerosol follows the thermal structure of the atmosphere.
 MLH indirectly from aerosol backscatter using a MLH algorithm.
 Does not work properly in extreme clear (aerosol-free) air and during precipitation events and fog.

⊙ ● SODAR detects wind profiles, temperature fluctuations and gradients, but no absolute temperature.

MLH indirectly from acoustic backscatter (MLH algorithm). LLJ from wind profiles. <u>Does not work properly</u> under perfectly neutral stratification, with very high wind speeds, and during stronger precipitation events. Restricted range.





# Literature

 

 48
 14.06.2012
 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing
 stefan.emeis@kit.edu
 Institute for Meteorology and Climate Research – Atmospheric Environmental Research



Asimakopoulos, D.N., C.G. Helmis, J. Michopoulos, 2004: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. - Meteor. Atmos. Phys. 85, 85–92.

Beyrich, F., 1997: Mixing height estimation from sodar data – a critical discussion. - Atmos. Environ. 31, 3941–3953.

#### **Ceilometer:**

Schäfer, K., S.M. Emeis, A. Rauch, C. Münkel, S. Vogt, 2004: Determination of mixing-layer heights from ceilometer data. In: Remote Sensing of Clouds and the Atmosphere IX. Schäfer, K., A. Comeron, M. Carleer, R.H. Picard, N. Sifakis (Eds.), Proc. SPIE, Bellingham, WA, USA, Vol. 5571, 248–259.

Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, D. García-Vizcaino, 2006: Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations. - Bound.-Lay. Meteor. 119, 135–157.

#### **RASS:**

Engelbart, D.A.M., J. Bange, 2002: Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS in the frame of the LITFASS project. Theor. Appl. Climatol. 73, 53–65.

Emeis, S., K. Schäfer, C. Münkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol. Z., 18, 149-154. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2009/0365)

Emeis, S., K. Schäfer, C. Münkel, R. Friedl, P. Suppan, 2011: Evaluation of the interpretation of ceilometer data with RASS and radiosonde data. Bound.-Lay. Meteorol., online April 5, 2011. DOI: <u>10.1007/s10546-011-9604-6</u>

#### Windlidar:

Emeis, S., M. Harris, R.M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. - Meteorol. Z., 16, 337-347.





#### **Reviews:**

Emeis, S., K. Schäfer, C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height – a review. -Meteorol. Z., 17, 621-630. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2008/0312)

#### **Books:**

#### Wind energy meteorology

Emeis, S., 2012: Wind Energy Meteorology - Atmospheric physics for wind power generation. Springer Heidelberg etc., to appear in August 2012. ISBN: ISBN 978-3-642-30522-1

#### boundary-layer remote sensing with application examples:

Emeis, S., 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Series: Atmospheric and Oceanographic Sciences Library, Vol. 40. Springer Heidelberg etc., X+174 pp. 114 illus., 57 in color., H/C. ISBN: 978-90-481-9339-4, DOI: 10.1007/978-90-481-9340-0

overview on the entire range of meteorological measurement methods:

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences. In situ and remote. Series: Quantifying the Environment Vol. 1. Borntraeger Stuttgart. XIV+257 pp., 103 Figs, 28 Tab. ISBN 978-3-443-01066-9.



# Thank you very much for your attention

Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu

www.imk-ifu.kit.edu

