

Institute for Applied Materials

Melt-Based Breeder Pebbles: Effect of Cooling and Analysis of Droplet Formation

O. H. J. B. Leys, M. H. H. Kolb, R. Knitter

The Helium Cooled Pebble Bed (HCPB) blanket concept proposed by the European Union for ITER is made up of several breeder units containing two distinct pebble bed zones. One zone encloses beryllium pebbles as neutron multipliers and the other encloses lithium orthosilicate as ceramic tritium breeders. A purge gas, composed of helium and hydrogen, is used to remove the generated tritium.

Be

Li₄SiO₄

The design of the closed fuel cycle, including tritium production and extraction, is essential to the overall efficiency of the reactor. Although the pebbles have no structural function, they still need to be able to withstand forces originating from thermal expansion as well as neutron irradiation. It is critical that the pebbles do not fragment and disintegrate while in operation, reducing the efficiency and stability of the pebble bed.

Pebble Fabrication

A melt-based process is used for the production of ceramic pebbles composed of **lithium orthosilicate**, Li_4SiO_4 , with additions of **lithium metatitanate**, Li_2TiO_3 .

- 1 Crucible temperature: 1300-1400 °C
- 2 Precursors: LiOH, SiO₂ and TiO₂
- 3 Nozzle diameter: **400 µm**

Weibull Analysis

The strength distribution of ceramics follows a **continuous Weibull probability distribution**. The distributions generate a Weibull modulus which is typically used as an indication of the production **process stability**. Crush-loads are related to the **size of defects** such as cracks and pores that arise during production. The larger the modulus, the lower the amount of variation in the crush-loads implying that there are less random factors present in the process.

- 4 Filling tube and inlet for400 mbar synthetic air
- 5 LN₂ spray cooling method
- 6 LN₂ quench method

The highest Weibull modulus for the production of ceramic pebbles is achieved using the **liquid nitrogen spray cooling method**. This method also increases the overall strength by approximately 20%.

Droplet Formation

The process uses the principles of the Rayleigh-**Plateau** instability of a falling liquid jet to form droplets which then solidify pebbles. form The to instabilities originate from disturbexternal minute which increase ances exponentially as the waves move further away from the nozzle. Eventually, when the pinched area becomes small enough, the jet will causing rupture the formation droplets, Of which spherical become due to surface tension.

Jet Instability	
Nozzle	
Constant radius	
Instabilities grow	
Critical length	00

- At 200 mbar, the majority of the pebbles are produced in the 750 µm range consistently throughout the batch.
- At 400 mbar, many oversized pebbles are formed due to the fusion of unsolidified droplets

Pebb	le Size Dist	ribution a	t 400 mba	ar
100 lete				40
80				35
Ŭ 60				25

It can be assumed that an increase in the operating pressure will cause an increase in the **turbulence** around the nozzle and hence more **variation in the velocity** of the jet. moving at different velocities.

At 1200 mbar, the pebbles are ejected at approximately 3 times the speed of those produced at 200 mbar. This violent causes more a 'pinching' during formation, resulting in many more pebbles smaller than 500 μ m.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

