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Outline 

Phenomenology of severe accidents in light water 
reactors (LWR) 

Summary of high-temperature oxidation of zirconium 
alloys in various atmospheres 

Behavior of boron oxide control rods during severe 
accidents 

Silver-indium-cadmium control rod failure during 
severe accidents 
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LWR severe accident scenario - I 

Loss of coolant causes steady heatup of the core due to 
Residual decay heat  
Reduced heat transfer to the remaining steam 

From ca. 1000°C oxidation of zirconium alloy cladding becomes 
significant leading to 

Mechanical degradation of claddings and loss of barrier effect 
Production of hydrogen 
Release of heat 

From ca. 1250°C  chemical interactions between the different 
core materials (stainless steel, Zr alloys, boron carbide …) lead to 
the local formation of melts significantly below the melting 
temperatures of the materials 
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LWR severe accident scenario - II 

How to stop the accident early in the 
reactor pressure vessel (RPV): 
 

Reflood and cooling as early as 
possible. 

If successful: 

Significant gain of safety and 
prevention of high loads to RPV.  

If not successful: 

Formation of melt pool in the core 
and relocation of melt/debris to the 
lower plenum (in-vessel, see TMI-2). 

Subsequently, failure of the RPV and 
release of corium melt into the 
containment (ex-vessel, see 
Chernobyl, Fukushima) 
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Core materials in Light Water Reactors 

UO2(/PuO2) fuel:  100-200 t 

Zry  cladding + grid spacers:     20-40 t 

Zry canister (BWR):            40 t 

Various steels, Inconel:       >500 t (including RPV) 

B4C absorber (BWR, VVER, …):    0.3-2 t 

AgInCd absorber (PWR):     3-5 t 

 

Environment 

Water, steam 

Air 

Nitrogen 
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After failure of RPV/primary circuit 

PWR fuel 
assembly 

BWR control 
blade 
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High-temperature oxidation of zirconium alloys 
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In steam, oxygen, nitrogen, air, and various mixtures 

Zircaloy-2, Zircaloy-4, Duplex, M5®, ZirloTM, E110 and others 

2-cm rod segments 

Temperature: 600-1600°C 

Hydrogen behavior 

 
 

Element Zircaloy-4 D4 M5 E110 ZIRLO 

Nb - - 1 1 1 

Sn 1.5 0.5 0.01 - 1 

Fe 0.2 0.5 0.05 0.008 0.11 

Cr 0.1 0.2 0.015 0.002 < 0.01 
 

Composition of zirconium cladding alloys for nuclear fuel rods 
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Oxidation of zirconium alloys – chemical reactions 

22 ZrOOZr →+

ZrNNZr →+ 25.0

∆Hf at 1500 K 

-1083 kJ/mol 

-361 kJ/mol 

-585 kJ/mol 222 22 HZrOOHZr +→+

Release of hydrogen and heat 
Hydrogen either released to the environment 
or absorbed by Zr metal 
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Hydrogen detonation in Fukushima Dai-ichi NPPs … 
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… main hydrogen source:  zirconium - steam reaction  
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Oxidation in steam (oxygen) 

Most LOCA and SFD codes use parabolic oxidation correlations 
(determined by the diffusion of oxygen through growing oxide scale) 

ZrO2 

α-Zr(O) 

prior β-Zr 

20 min at 1200°C in steam 
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Calculated oxide thickness during oxidation of Zry 
at 1200°C in steam 
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Breakaway oxidation 

Loss of protective properties of oxide scale 
due to its mechanical failure. 

Breakaway is caused by phase transformation 
from pseudo-stable tetragonal to monoclinic 
oxide and corresponding change in density up 
to ca. 1050°C. 

Critical times and oxide thicknesses for 
breakaway strongly depend on type of alloy 
and boundary conditions  
(ca. 30 min at 1000°C and 8 h at 600°C). 

During breakaway significant amounts of 
hydrogen can be absorbed (>40 at.%, 7000 
wppm) due to local enrichment of H2 in pores 
and cracks near the metal/oxide boundary 
(“hydrogen pump”). 

3 h, 1000 °C 
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In-situ investigation of hydrogen uptake during 
oxidation of Zry in steam by neutron radiography 
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M. Grosse, 16th Intern. Symposium on 
Zirconium in the Nuclear Industry (ASTM) 
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Breakaway 

Rapid initial hydrogen uptake 

Further strong hydrogen absorption 
after transition to breakaway 
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Oxidation in atmospheres containing nitrogen 

Air ingress into reactor core, spent fuel pond, or 
transportation cask 

Nitrogen in BWR containments (inertization) and ECCS 
pressurizers 

Prototypically following steam oxidation and mixed 
with steam 

 

Consequences: 
Significant heat release causing temperature runaway 
from lower temperatures than in steam 

Strong degradation of cladding causing early loss of 
barrier effect 

High oxygen activity influencing FP chemistry and 
transport 

 

Late phase after RPV failure

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Late phase after RPV failureLate phase after RPV failure

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Late phase after RPV failure

Open RPV lidOpen RPV lidOpen RPV lid

Mid loop operation

Open RPV lidOpen RPV lidOpen RPV lidOpen RPV lidOpen RPV lidOpen RPV lid

Mid loop operation

Spent fuel storage pool accidentSpent fuel storage pool accident
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Oxidation of Zr alloys in N2, O2 and air 
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Parabolic reaction kinetics 

~ Linear oxidation kinetics 1200 °C 

Oxidation rate in air is much higher than in oxygen or steam 
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Oxidation of Zr alloys in N2, O2 and air 
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1 h 

3 h 

1.5 h 
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Consequences of air ingress for cladding 

1 hour at 1200°C in steam 1 hour at 1200°C in air 

Loss of barrier effect of cladding 
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Oxidation in mixed atmospheres 

1 hour at 1000 °C in steam 

Strong effect of nitrogen on oxidation and degradation 

Nitrogen acts like a catalyst (NOT like an inert gas) 

Enhanced hydrogen source term by oxidation in mixtures 
containing nitrogen 

1 hour at 1000 °C in 50/50 steam/N2 
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Absorber materials in LWRs 
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Boron carbide 

• Used in boiling water 
reactors (BWR), VVERs,  
some pressurized water 
reactors (PWR) 

• Control rods (PWR) or cross-
shaped blades (BWR) 

• Surrounded by stainless steel 
(cladding, blades) and Zry 
(guide tubes, canisters) 

Zry guide tube 
Tmelt=1900°C 

SS cladding 
Tmelt=1450°C 

AgInCd 
Tmelt=800°C 

AgInCd alloy 

• Used in PWRs  

• Surrounded by 
stainless steel 
cladding and Zry 
guide tubes 

• Rods in Zry guide 
tubes combined 
in control rod 
assemblies 

PWR control rod 
assembly 

BWR control 
blade 

Zry guide tube 
Tmelt=1900°C 

SS cladding 
Tmelt=1450°C 

B4C 
Tmelt=2450°C 

BWR control rod PWR control rod 

http://upload.wikimedia.org/wikipedia/commons/c/cb/Brennelement_Gruppe.svg
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Degradation of B4C control rods (1-pellet) 
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Post-test appearance and axial cross section of B4C/SS/Zry specimens after 1 hour 
isothermal tests at temperatures between 1000 and 1600 °C 

Melt 
formation 

Oxide 
shell 

Failure and B4C/melt 
consumption 
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Degradation of B4C control blade (BWR bundle test) 
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CORA-16 

Complete loss of 
absorber blade 

Dissolution of 
cladding and fuel 

Massive melt 
relocation (SS, Zry, 
UO2) 

fuel 
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Eutectic interaction of stainless steel with B4C 
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 4 wt.% B4C 

1 h at approx. 1250 °C 

 1 wt.% B4C 

 0.3 wt.% B4C 

Complete 
liquefaction 
of stainless 
steel 

1/3 of SS 
liquefied 
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Eutectic interaction of stainless steel with B4C 
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SS 
 

B4C 

Rapid and 
complete melting 
of SS at 1250°C 
starting at B4C/SS 
boundary 

1 cm 
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Oxidation of boron carbide; main chemical reactions 
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)(8)()(2)(8 223224 gHgCOlOBgOHCB ++→+

)(2)( 2232 gHBOgOHOB →+

-987 kJ/mol 

+341 kJ/mol 

)(4)()(2)(6 243224 gHgCHlOBgOHCB ++→+

-760 kJ/mol 

Release of hydrogen, various carbon-containing gases 
and heat 
Formation of a superficial boron oxide layer and its 
vaporization 
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Oxidation kinetics of B4C in steam 
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Oxidation of B4C absorber melts 
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Transient oxidation of B4C/SS/Zry-4 absorber melts  
 in steam between 800 and 1550 °C 

before oxidation after oxidation 
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Gas release during oxidation of B4C (melts)  

Hydrogen 
Up to 290 g H2 per kg B4C 

Up to 500 kg additional H2 production for BWRs  

Carbon monoxide/dioxide 
Ratio depending on temperature and oxygen activity 

Non-condensable gases affecting THs and pressure 

CO combustible and poisonous 

Methane  
Would have strong effect on fission product chemistry (iodine!) 

Bundle experiments and SETs reveal only insignificant release of CH4 

Boric acids 
Volatile and soluble in water 

Deposition at colder locations in the circuit 
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Energetic effects of B4C oxidation 

Oxidation of B4C in steam: 13 MJ/kgB4C 

Oxidation of B4C in oxygen:  50 MJ/kgB4C 

Significant contribution to energy release in the core 

For comparison: 

Oxidation Zr in steam:    6 MJ/kgZr 

Fuel value of mineral oil: 12 MJ/kgoil 

Fuel value of black coal: 30 MJ/kgcoal 
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Possible consequences for Fukushima accidents 
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Boiling water reactors with cruciform-shaped blades 

1 control blade = 7 kg B4C + 93 kg SS 

Complete liquefaction of the blade at T>1200°C 

 

Fukushima Daiichi NPPs: 

Unit 1: 97 control blades 

Unit 2-4: 137 control blades 

 

Complete oxidation of B4C inventory by steam: 

195/275 kg H2 

2700/3800 kWh (10/14 GJ) 
BWR control rod 
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Failure of AgInCd absorber rod 

Ag-In-Cd control rods fail at temperatures 
above 1200°C due to the eutectic 
interaction between SS and Zry-4 

Failure is very stochastic (from local to 
explosive) with the tendency to higher 
temperatures for symmetric samples and 
specimens with inner oxidation 

No ballooning of the SS cladding tube was 
observed before rupture 

Burst release of cadmium vapour is 
followed by continuous release of indium 
and silver aerosols and absorber melt 
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Zry guide tube
Tmelt=1900°C

SS cladding
Tmelt=1450°C

AgInCd
Tmelt=800°C
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Different failure types of AgInCd absorber rod 
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SIC-02 (asym. rod) 
Local failure at 1230°C 

SIC-05 (symmetric rod) 
Global failure at 1350°C 
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Explosive failure of SIC-11 w/o Zry guide tube 
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-30 s -20 s -0.04 s -10 s 0.00 s 

No balloning before explosive failure! 
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QUENCH-13 control rod appearance 
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No direct interaction between AIC and steel 

Increasing interactions between relocated AIC and Zry in gap with temp. 

Increasing interaction between melt and steel with increasing Zr content 
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QUENCH-13 bundle test: aerosol release 

First burst release of cadmium vapor, then aerosols mainly consisting of silver 
and indium  
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Summary 
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Chemical interactions may strongly affect the early phase of a severe 
nuclear accident. 

The main hydrogen source term is produced by metal-steam reactions 

Exothermal chemical reactions can cause heat release larger than the 
decay heat and hence strongly contribute to the power generation in 
the core 

Nitrogen does not behave like an inert gas during the conditions of a 
severe accident 

Eutectic interactions between the various materials in the core (i.e. 
B4C-SS, SS-Zry) cause liquefaction of materials significantly below their 
melting temperatures 

Boron carbide may (at least locally) significantly contribute to release 
of heat, hydrogen and other gases 
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