

Selected aspects of materials behavior during severe nuclear accidents in nuclear reactors

Martin Steinbrück

HiTemp2012 Conference, 11-13 September 2012, Munich; Germany

Institute for Applied Materials, IAM-AWP / Program NUKLEAR

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Karlsruhe Institute of Technology

Founded in 2009

= FZK research center (1956) + University Karlsruhe (1825)

= 9000 employees

= 23 000 students

Outline

- Phenomenology of severe accidents in light water reactors (LWR)
- Summary of high-temperature oxidation of zirconium alloys in various atmospheres
- Behavior of boron oxide control rods during severe accidents
- Silver-indium-cadmium control rod failure during severe accidents

LWR severe accident scenario - I

- Loss of coolant causes steady heatup of the core due to
 - Residual decay heat
 - Reduced heat transfer to the remaining steam
- From ca. 1000°C oxidation of zirconium alloy cladding becomes significant leading to
 - Mechanical degradation of claddings and loss of barrier effect
 - Production of hydrogen
 - Release of heat

From ca. 1250°C chemical interactions between the different core materials (stainless steel, Zr alloys, boron carbide ...) lead to the local formation of melts significantly below the melting temperatures of the materials

LWR severe accident scenario - II

How to stop the accident early in the reactor pressure vessel (RPV):

Reflood and cooling as early as possible.

If successful:

Significant gain of safety and prevention of high loads to RPV.

If not successful:

- Formation of melt pool in the core and relocation of melt/debris to the lower plenum (in-vessel, see TMI-2).
- Subsequently, failure of the RPV and release of corium melt into the containment (ex-vessel, see Chernobyl, Fukushima)

Core materials in Light Water Reactors

- $UO_2(/PuO_2)$ fuel:
- Zry cladding + grid spacers: 20-40 t
- Zry canister (BWR): 40 t
- Various steels, Inconel:
- B_4C absorber (BWR, VVER, ...): 0.3-2 t
- AgInCd absorber (PWR): 3-5 t

Environment

- Water, steam
 - Air After failure of RPV/primary circuit Nitrogen

assembly

BWR control blade

HITEMP2012

100-200 t

High-temperature oxidation of zirconium alloys

- In steam, oxygen, nitrogen, air, and various mixtures
- Zircaloy-2, Zircaloy-4, Duplex, M5[®], ZirloTM, E110 and others
- 2-cm rod segments
- Temperature: 600-1600°C
- Hydrogen behavior

Composition of zirconium cladding alloys for nuclear fuel rods

Element	Zircaloy-4	D4	M5	E110	ZIRLO
Nb	-	-	1	1	1
Sn	1.5	0.5	0.01	-	1
Fe	0.2	0.5	0.05	0.008	0.11
Cr	0.1	0.2	0.015	0.002	< 0.01

ΔH_{f} at 1500 K

 $Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$ -585 kJ/mol

 $Zr + O_2 \rightarrow ZrO_2$

-1083 kJ/mol

 $Zr + 0.5N_2 \rightarrow ZrN$ -361 kJ/mol

 Release of hydrogen and heat
Hydrogen either released to the environment or absorbed by Zr metal

Hydrogen detonation in Fukushima Dai-ichi NPPs ...

Oxidation in steam (oxygen)

Most LOCA and SFD codes use parabolic oxidation correlations (determined by the diffusion of oxygen through growing oxide scale)

Calculated oxide thickness during oxidation of Zry at 1200°C in steam

IAM Institute for Applied Materials

20 min at 1200°C in steam

Breakaway oxidation

- Loss of protective properties of oxide scale due to its mechanical failure.
- Breakaway is caused by phase transformation from pseudo-stable tetragonal to monoclinic oxide and corresponding change in density up to ca. 1050°C.
- Critical times and oxide thicknesses for breakaway strongly depend on type of alloy and boundary conditions (ca. 30 min at 1000°C and 8 h at 600°C).
- During breakaway significant amounts of hydrogen can be absorbed (>40 at.%, 7000 wppm) due to local enrichment of H₂ in pores and cracks near the metal/oxide boundary ("hydrogen pump").

In-situ investigation of hydrogen uptake during oxidation of Zry in steam by neutron radiography

Oxidation in atmospheres containing nitrogen

- Air ingress into reactor core, spent fuel pond, or transportation cask
- Nitrogen in BWR containments (inertization) and ECCS pressurizers
- Prototypically following steam oxidation and mixed with steam
- Consequences:
 - <u>Significant heat release</u> causing temperature runaway from lower temperatures than in steam
 - <u>Strong degradation of cladding</u> causing early loss of barrier effect
 - <u>High oxygen activity</u> influencing FP chemistry and transport

Oxidation of Zr alloys in N₂, O₂ and air

Consequences of air ingress for cladding

1 hour at 1200°C in steam

1 hour at 1200°C in air

Loss of barrier effect of cladding

Oxidation in mixed atmospheres

1 hour at 1000 °C in steam

1 hour at 1000 °C in 50/50 steam/N₂

- Strong effect of nitrogen on oxidation and degradation
- Nitrogen acts like a catalyst (NOT like an inert gas)
- Enhanced hydrogen source term by oxidation in mixtures containing nitrogen

Absorber materials in LWRs

Boron carbide

- Used in boiling water reactors (BWR), VVERs, some pressurized water reactors (PWR)
- Control rods (PWR) or crossshaped blades (BWR)
- Surrounded by stainless steel (cladding, blades) and Zry (guide tubes, canisters)

BWR control rod

18

AgInCd alloy

- Used in PWRs
- Surrounded by stainless steel cladding and Zry guide tubes
- Rods in Zry guide tubes combined in control rod assemblies

PWR control rod assembly

IAM Institute for Applied Materials

Degradation of B₄C control rods (1-pellet)

Post-test appearance and axial cross section of B₄C/SS/Zry specimens after 1 hour isothermal tests at temperatures between 1000 and 1600 °C

Degradation of B₄C control blade (BWR bundle test) B₄C absorber blade (ss)

16-08 (1145mm), bottom view

16-03 (310mm), top view

-07 (963mm), top view

- Complete loss of absorber blade
- Dissolution of cladding and fuel
- Massive melt relocation (SS, Zry, UO₂)

16–09 (525mm), top view center grid spacer elevation

16-01 (110mm), top view

Eutectic interaction of stainless steel with B₄C

1 h at approx. 1250 °C 4 wt.% B_4C 500 µm 1 wt.% B₄C 500 um 0.3 wt.% B₄C 500 µm

Complete liquefaction of stainless steel

1/3 of SS liquefied

Eutectic interaction of stainless steel with B₄C

1 cm

$$B_4C + 8H_2O(g) \rightarrow 2B_2O_3(l) + CO_2(g) + 8H_2(g)$$
 -760 kJ/mol

$$B_4C + 6H_2O(g) \rightarrow 2B_2O_3(l) + CH_4(g) + 4H_2(g)$$
 -987 kJ/mol

$$B_2O_3 + H_2O(g) \rightarrow 2HBO_2(g)$$
 +341 kJ/mol

- Release of hydrogen, various carbon-containing gases and heat
- Formation of a superficial boron oxide layer and its vaporization

Oxidation kinetics of B₄C in steam

Strongly
dependant on B₄C
structure and
thermo hydraulic
boundary
conditions like
pressure and flow
rate

Oxidation of B₄C absorber melts

Transient oxidation of $B_4C/SS/Zry-4$ absorber melts in steam between 800 and 1550 °C

before oxidation

after oxidation

Oxidation rate during reaction of absorber melts and pure CR components in steam

Gas release during oxidation of B₄C (melts)

Hydrogen

- Up to 290 g H₂ per kg B₄C
- Up to 500 kg additional H₂ production for BWRs
- Carbon monoxide/dioxide
 - Ratio depending on temperature and oxygen activity
 - Non-condensable gases affecting THs and pressure
 - CO combustible and poisonous
- Methane
 - Would have strong effect on fission product chemistry (iodine!)
 - Bundle experiments and SETs reveal only insignificant release of CH₄
- Boric acids
 - Volatile and soluble in water
 - Deposition at colder locations in the circuit

Energetic effects of B₄C oxidation

- **Oxidation of B_4C in steam:** 13 MJ/kg_{B4C}
- Oxidation of B_4C in oxygen: 50 MJ/kg_{B4C}
- Significant contribution to energy release in the core

For comparison:

- Oxidation Zr in steam:
- Fuel value of mineral oil:
- Fuel value of black coal:

- 6 MJ/kg_{Zr}
- 12 MJ/kg_{oil}
- 30 MJ/kg_{coal}

Possible consequences for Fukushima accidents

- Boiling water reactors with cruciform-shaped blades
- 1 control blade = 7 kg B₄C + 93 kg SS
- Complete liquefaction of the blade at T>1200°C

Fukushima Daiichi NPPs:

- Unit 1: 97 control blades
- Unit 2-4: 137 control blades
- Complete oxidation of B₄C inventory by steam:
- 195/275 kg H₂
- ▶ 2700/3800 kWh (10/14 GJ)

Failure of AgInCd absorber rod

- Ag-In-Cd control rods fail at temperatures above 1200°C due to the eutectic interaction between SS and Zry-4
- Failure is very stochastic (from local to explosive) with the tendency to higher temperatures for symmetric samples and specimens with inner oxidation
- No ballooning of the SS cladding tube was observed before rupture
- Burst release of cadmium vapour is followed by continuous release of indium and silver aerosols and absorber melt

Different failure types of AgInCd absorber rod

SIC-02 (asym. rod) Local failure at 1230°C

SIC-05 (symmetric rod) Global failure at 1350°C

Explosive failure of SIC-11 w/o Zry guide tube

31

QUENCH-13 control rod appearance

- No direct interaction between AIC and steel
- Increasing interactions between relocated AIC and Zry in gap with temp.
- Increasing interaction between melt and steel with increasing Zr content

QUENCH-13 bundle test: aerosol release

First burst release of cadmium vapor, then aerosols mainly consisting of silver and indium

- Chemical interactions may strongly affect the early phase of a severe nuclear accident.
- The main hydrogen source term is produced by metal-steam reactions
- Exothermal chemical reactions can cause heat release larger than the decay heat and hence strongly contribute to the power generation in the core
- Nitrogen does not behave like an inert gas during the conditions of a severe accident
- Eutectic interactions between the various materials in the core (i.e. B₄C-SS, SS-Zry) cause liquefaction of materials significantly below their melting temperatures
- Boron carbide may (at least locally) significantly contribute to release of heat, hydrogen and other gases

