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Karlsruhe Institute of Technology 
 
Founded in 2009 
 
= FZK research center (1956) + University Karlsruhe (1825) 
 
= 9000 employees 
 
= 23 000 students 
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Outline 

Phenomenology of severe accidents in light water reactors 
(LWR) 

Experimental facility and setups at KIT 

High-temperature oxidation of zirconium alloys in various 
atmospheres 

Steam 

Air 

Mixtures 

Behavior of boron oxide control rods during severe accidents 
Degradation 

Eutectic interactions 

Oxidation 
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LWR severe accident scenario - I 

Loss of coolant causes steady heatup of the core due to 
Residual decay heat  
Reduced heat transfer to the remaining steam 

From ca. 1000°C oxidation of zirconium alloy cladding becomes 
significant leading to 

Mechanical degradation of claddings and loss of barrier effect 
Production of hydrogen 
Release of heat 

From ca. 1250°C  chemical interactions between the different 
core materials (stainless steel, Zr alloys, boron carbide …) lead to 
the local formation of melts significantly below the melting 
temperatures of the materials 

Martin Steinbrück                                            JAEA SA Seminar, Tokyo, 2012-10-26 



Institute for Applied Materials 5 

LWR severe accident scenario - II 
How to stop the accident early in the 
reactor pressure vessel (RPV): 
 

Reflood and cooling as early as 
possible. 

If successful: 

Significant gain of safety and 
prevention of high loads to RPV.  

If not successful: 

Formation of melt pool in the core 
and relocation of melt/debris to the 
lower plenum (in-vessel, see TMI-2). 

Subsequently, failure of the RPV and 
release of corium melt into the 
containment (ex-vessel, see 
Chernobyl, Fukushima) 
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Core materials in Light Water Reactors 

UO2(/PuO2) fuel:  100-200 t 

Zry  cladding + grid spacers:     20-40 t 

Zry canister (BWR):            40 t 

Various steels, Inconel:       >500 t (including RPV) 

B4C absorber (BWR, VVER, …):    0.3-2 t 

AgInCd absorber (PWR):     3-5 t 

 

Environment 

Water, steam 

Air 

Nitrogen 
After failure of RPV/primary circuit 

PWR fuel 
assembly 

BWR control 
blade 
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QUENCH Program at KIT 

Separate-effects 
tests 

Bundle experiments 

Investigation of hydrogen source term and materials interactions during 
LOCA and early phase of severe accidents including reflood 

PWR 
fuel 
element 
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QUENCH Facility 

Unique out-of-pile bundle facility to 
investigate reflood of an 
overheated reactor core 

21-31 electrically heated fuel rod 
simulators 

Extensive instrumentation for T, p, 
flow rates, level, etc. 

So far, 16 experiments on SA 
performed (1996-today) 

Influence of pre-oxidation, initial 
temperature, flooding rate 

B4C, Ag-In-Cd control rods 

Air ingress 

Advanced cladding alloys 

Part of the validation matrix of 
most SA codes 

M. Steinbrück et al., Synopsis 
and outcome of the Quench 
experimental program,  
NED 240 (2010), 1714-1727. 
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QUENCH Separate-effects tests: Main setups 
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High-temperature oxidation of zirconium alloys 

In Steam, oxygen, nitrogen, air, and various mixtures 

Zircaloy-2, Zircaloy-4, Duplex, M5®, ZirloTM, E110 and others 

2-cm rod segments 

Temperature: 600-1600°C 

Hydrogen behavior 

 
 

Element Zircaloy-4 D4 M5 E110 ZIRLO 

Nb - - 1 1 1 

Sn 1.5 0.5 0.01 - 1 

Fe 0.2 0.5 0.05 0.008 0.11 

Cr 0.1 0.2 0.015 0.002 < 0.01 
 

Composition of cladding alloys for nuclear fuel rods 
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Oxidation of zirconium alloys – chemical reactions 

22 ZrOOZr →+

ZrNNZr →+ 25.0

∆Hf at 1500 K 

-1083 kJ/mol 

-361 kJ/mol 

-585 kJ/mol 222 22 HZrOOHZr +→+

Release of hydrogen and heat 
Hydrogen either released to the environment 
or absorbed by Zr metal 
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Hydrogen detonation in Fukushima Dai-ichi NPPs … 

… main hydrogen source:  zirconium - steam reaction  
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Oxidation in steam (oxygen) 

Most LOCA and SFD codes use parabolic oxidation correlations 
(determined by the diffusion of oxygen through growing oxide scale) 

ZrO2 

α-Zr(O) 

prior β-Zr 

20 min at 1200°C in steam 
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Isothermal oxidation of Zr alloys in steam 

Significant differences 
(up to 500%) between 
various alloys at 
temperatures below 
1100°C 

From 1100°C max. 
differences between 
alloys of 30% are found 

The oxidation kinetics 
are mainly determined 
by the oxide scale 
(breakaway, 
crystallographic phase, 
degree of sub-
stoichiometry). 
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Breakaway oxidation 

Loss of protective properties of oxide scale 
due to its mechanical failure. 

Breakaway is caused by phase transformation 
from pseudo-stable tetragonal to monoclinic 
oxide and corresponding change in density up 
to ca. 1050°C. 

Critical times and oxide thicknesses for 
breakaway strongly depend on type of alloy 
and boundary conditions  
(ca. 30 min at 1000°C and 8 h at 600°C). 

During breakaway significant amounts of 
hydrogen can be absorbed (>40 at.%, 7000 
wppm) due to local enrichment of H2 in pores 
and cracks near the metal/oxide boundary 
(“hydrogen pump”). 

3 h, 1000 °C 

Zry-4 

24 h, 900 °C 

E110 
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Transition to breakaway 

 Important for long-term scenarios! 

 Insignificant during fast transients and LOCAs 

  

Temperature 
°C 

Time at 
transition 

h 

Oxide at 
transition 

µm 
600 6-8 3-8 

700 1-10 7-17 

800 1-7 11-37 

900 0.6-1.5 18-33 

1000 0.3-0.7 43-85 
 

Martin Steinbrück                                            JAEA SA Seminar, Tokyo, 2012-10-26 



Institute for Applied Materials 17 

Correlation of H absorption and oxide morphology 
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In-situ investigation of hydrogen uptake during 
oxidation of Zry in steam by neutron radiography 

M. Grosse, 16th Intern. Symposium on 
Zirconium in the Nuclear Industry (ASTM) 
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Oxidation in atmospheres containing nitrogen 

Air ingress reactor core, spent fuel pond, or 
transportation cask 

Nitrogen in BWR containments (inertization) and ECCS 
pressurizers 

Prototypically following steam oxidation and mixed 
with steam 

 

Consequences: 
Significant heat release causing temperature runaway 
from lower temperatures than in steam 

Strong degradation of cladding causing early loss of 
barrier effect 

High oxygen activity influencing FP chemistry and 
transport 

 

Late phase after RPV failure

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Residual fuel 
elements

Breach in 
the primary 
circuit

RPV 
rupture

Late phase after RPV failureLate phase after RPV failure

Residual fuel 
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Residual fuel 
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Late phase after RPV failure

Open RPV lidOpen RPV lidOpen RPV lid

Mid loop operation

Open RPV lidOpen RPV lidOpen RPV lidOpen RPV lidOpen RPV lidOpen RPV lid

Mid loop operation

Spent fuel storage pool accidentSpent fuel storage pool accident
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Oxidation of Zr alloys in N2, O2 and air 
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Oxidation rate in air is much higher than in oxygen or steam 
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Oxidation of Zr alloys in N2, O2 and air 
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Consequences of air ingress for cladding 

1 hour at 1200°C in steam 1 hour at 1200°C in air 

Loss of barrier effect of cladding 
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Mechanism of air oxidation 

1 

2 

3 

4 

1 – initially formed dense oxide ZrO2 

2 – porous oxide after oxidation of ZrN 

3 – ZrO2 / ZrN mixture 

4 – α-Zr(O) 

Diffusion of air through 
imperfections in the oxide 
scale to the metal/oxide 
boundary 

Consumption of oxygen 

Remaining nitrogen reacts with 
zirconium and forms ZrN  

ZrN is re-oxidized by fresh air 
with proceeding reaction 
associated with a volume 
increase by 48% 

Formation of porous and non-
protective oxide scales 
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Oxidation in mixed steam-air atmospheres 

0.1 H2O 
0.9 air 

0.3 H2O 
0.7 air 

0.7 H2O 
0.3 air 

H2O 

Zry-4, 1 hour at 1200°C 

Increasing degradation with raising content of air in the mixture 

Martin Steinbrück                                            JAEA SA Seminar, Tokyo, 2012-10-26 



Institute for Applied Materials 25 

Oxidation in mixed atmospheres 

1 hour at 1000 °C in steam 

Strong effect of nitrogen on oxidation and degradation 

Nitrogen acts like a catalyst (NOT like an inert gas) 

Enhanced hydrogen source term by oxidation in mixtures 
containing nitrogen 

1 hour at 1000 °C in 50/50 steam/N2 
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Boron carbide oxidation and interactions 

B4C is widely used as control material in 
BWRs, VVERs, RBMKs, and some PWRs 

Integral tests (e.g. CORA, QUENCH, Phebus 
FPT3) have shown a strong influence of B4C 
control rods on bundle degradation 

Oxidation of B4C (containing melts) in steam 
produces large amounts of hydrogen and 
heat 

B4C oxidation causes the formation of gas 
phase carbon (CO, CO2, CH4) and boron 
(H3BO3, HBO2) compounds which affect the 
FP chemistry 
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Boron carbide in LWRs 

Reactor Mass B4C, kg 

German BWR line 69 1200 

German BWR line 72 1700 

GE BWR-3 (Fukushima Daiichi, unit 1) 680 

GE BWR-4 (Fukushima Daiichi, unit 2-4) 960 

VVER 1000 250 

FRAMATOME PWR 1300MW 320 

FRAMAROM PWR 1450MW 340 

EPR 440 

Zry guide tube
Tmelt=1900°C

SS cladding
Tmelt=1450°C

B4C
Tmelt=2450°C

BWR 

PWR 

B4C 

SS 

Zry 
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Degradation of B4C control rods (1-pellet) 
Post-test appearance and axial cross section of B4C/SS/Zry specimens after 1 hour 
isothermal tests at temperatures between 1000 and 1600 °C 

Melt 
formation 

Oxide 
shell 

Failure and B4C/melt 
consumption 
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Degradation of B4C control rods (single rod) 

Local oxide shell failure and 
oxidation of B4C 

Relocated absorber melt 

Partly dissolved B4C pellet 

ZrO2 scale enclosing the 
absorber melt 

30 min, 1470°C, steam 
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Degradation of B4C control rods (PWR bundle test) 
Bundle cross sections 

QUENCH-07 
with B4C 
CR failure at 
1312°C 

QUENCH-08 
w/o B4C 

550 mm (Tmax≈1000°C) 750 mm (Tmax≈1300°C) 950 mm (Tmax≈1500°C) 
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Degradation of B4C control blade (BWR bundle test) 
CORA-16 

fuel 

Martin Steinbrück                                            JAEA SA Seminar, Tokyo, 2012-10-26 

Complete loss of 
absorber blade 

Dissolution of 
cladding and fuel 

Massive melt 
relocation (SS, Zry, 
UO2) 
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Degradation of BWR control blades 

B C4 B C4 B C4

SS
absorber
blade

Zry
channel
box wall

Zry
ss

UO2

1.  Interaction between 
B4C and SS blade  

2.  Interaction between 
B4C/SS melt and Zry 
channel box 

3.  Interaction between 
B4C/SS/Zry melt with 
fuel rods + oxidation 
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Eutectic interaction of stainless steel with B4C 

 4 wt.% B4C 

1 h at approx. 1250 °C 

 1 wt.% B4C 

 0.3 wt.% B4C 

Complete 
liquefaction 
of stainless 
steel 

1/3 of SS 
liquefied 
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Eutectic interaction of stainless steel with B4C 

SS 
 

B4C 

Rapid and 
complete melting 
of SS at 1250°C 
starting at B4C/SS 
boundary 
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1h @  
1280°C 

B4C 

SS 

Solidified melt 

B4C 

Only little 
dissolution 
of B4C 

Eutectic interaction of stainless steel with B4C 

B4C 

B4C 

Initial geometry of B4C crucible 
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Oxidation of B4C: Main chemical reactions 

)(7)()(2)(7 23224 gHgCOlOBgOHCB ++→+

)(8)()(2)(8 223224 gHgCOlOBgOHCB ++→+

)(4)()(2)(6 243224 gHgCHlOBgOHCB ++→+

)(2)( 2232 gHBOgOHOB →+

)(2)(3 33232 gBOHgOHOB →+
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Oxidation kinetics of B4C in steam 
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Gas release during oxidation of B4C (melts)  

Hydrogen 
Up to 290 g H2 per kg B4C 

Up to 500 kg additional H2 production for BWRs  

Carbon monoxide/dioxide 
Ratio depending on temperature and oxygen activity 

Non-condensable gases affecting THs and pressure 

CO combustible and poisonous 

Methane  
Would have strong effect on fission product chemistry (iodine!) 

Bundle experiments and SETs reveal only insignificant release of CH4 

Boric acids 
Volatile and soluble in water 

Deposition at colder locations in the circuit 
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Gas release after failure of B4C CR segment  

1500°C heatup cooldown 

steam off 

Oxide shell 
failure 
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Hydrogen release in QUENCH bundle experiments 

Comparison of hydrogen release during the various test phases  
of bundle tests QUENCH-07 (with B4C) and QUENCH-08 (w/o B4C) 
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Oxidation of B4C absorber melts 

Transient oxidation of B4C/SS/Zry-4 absorber melts  
 in steam between 800 and 1550 °C 

before oxidation after oxidation 

0 500 1000 1500 2000 2500
0

2

4

6

8

10

800

1000

1200

1400

1600

B4C SS Zry-4
  0 100  0
  0  0 100
  100  0  0
  5 95  0
   9 81 10
 Temperature

H 2 r
el

ea
se

 ra
te

, l
/h

Time, s

 T
em

pe
ra

tu
re

, °
C

Hydrogen release (∼ ox. rate) during oxidation 
of absorber melts and pure CR components 

ZrO2 

Martin Steinbrück                                            JAEA SA Seminar, Tokyo, 2012-10-26 



Institute for Applied Materials 42 

Energetic effects of B4C oxidation 

Oxidation of B4C in steam: 13 MJ/kgB4C 

Oxidation of B4C in oxygen:  50 MJ/kgB4C 

Significant contribution to energy release in the core 

For comparison: 

Oxidation Zr in steam:    6 MJ/kgZr 

Fuel value of mineral oil: 12 MJ/kgoil 

Fuel value of black coal: 30 MJ/kgcoal 
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Possible consequences for Fukushima accidents 

Boiling water reactors with cruciform-shaped blades 

1 control blade = 7 kg B4C + 93 kg SS 

Complete liquefaction of the blade at T>1200°C 

 

Fukushima Daiichi NPPs: 

Unit 1: 97 control blades 

Unit 2-4: 137 control blades 

 

Complete oxidation of B4C inventory by steam: 

195/275 kg H2 

2700/3800 kWh (10/14 GJ) 
BWR control rod 
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Summary 
Chemical interactions may strongly affect the early phase of a severe 
accident 

The main hydrogen source term is produced by metal (B4C)-steam 
reactions 

Exothermal chemical reactions can cause heat release larger than the 
decay heat and hence strongly contribute to the power generation in 
the core 

Nitrogen does not behave like an inert gas during the conditions of a 
severe accident 

Eutectic interactions between the various materials in the core (i.e. 
B4C-SS, B4C-Zry) cause liquefaction of materials significantly below 
their melting temperatures 

Boron carbide may (at least locally) significantly contribute to release 
of heat, hydrogen and other gases 
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THANKS to … 

  The QUENCH team at KIT  

  Masaki Kurata (JAEA) for inviting me 

  YOU … for your attention 
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Oxidation of Zr alloys in various atmospheres 
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Reaction of α-Zr(O) with nitrogen 

1200 °C, 6.5 wt% O 
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BOX rig for investigation of materials at high 
temperatures (1700°C) in defined atmospheres 

Air lock 
Steam 
supply 

to MS 
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In-situ investigation of hydrogen diffusion in Zry 

M. Grosse, 16th Intern. Symposium on 
Zirconium in the Nuclear Industry (ASTM) 

Example: 
Hydrogen diffusion into a Zry-4 cylinder  
Surface oxidized except one base 
Ø =12mm, l = 20 mm  
at 1100°C  
time ratio: 1:100 
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NETZSCH® steam furnace for TGA 

Up to 100% steam 

Up to 1250°C 
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Single-rod QUENCH tests 

Reflood from 1400°C 

15-cm rods filled with 
ZrO2 pellets 

Direct inductive 
heating till melting 
temperatures 

Video recording 

Mass spectrometer 
for analysis of 
hydrogen release 
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Phase diagram Zr - O 
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Phase diagram Zr - H 
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Phase diagram iron - boron 
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