

Early core degradation with special emphasis on oxidation and B₄C control rod failure

Martin Steinbrück

International Seminar on Fuel Degradation Methodology in Severe Accidents - Tokyo, Japan, 26 October 2012

Institute for Applied Materials IAM-AWP & Program NUKLEAR

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Karlsruhe Institute of Technology

Founded in 2009

= FZK research center (1956) + University Karlsruhe (1825)

= 9000 employees

= 23 000 students

- Phenomenology of severe accidents in light water reactors (LWR)
- Experimental facility and setups at KIT
- High-temperature oxidation of zirconium alloys in various atmospheres
 - Steam
 - Air
 - Mixtures
- Behavior of boron oxide control rods during severe accidents
 - Degradation
 - Eutectic interactions
 - Oxidation

LWR severe accident scenario - I

- Loss of coolant causes steady heatup of the core due to
 - Residual decay heat
 - Reduced heat transfer to the remaining steam
- From ca. 1000°C oxidation of zirconium alloy cladding becomes significant leading to
 - Mechanical degradation of claddings and loss of barrier effect
 - Production of hydrogen
 - Release of heat

From ca. 1250°C chemical interactions between the different core materials (stainless steel, Zr alloys, boron carbide ...) lead to the local formation of melts significantly below the melting temperatures of the materials

LWR severe accident scenario - II

How to stop the accident early in the reactor pressure vessel (RPV):

Reflood and cooling as early as possible.

If successful:

Significant gain of safety and prevention of high loads to RPV.

If not successful:

- Formation of melt pool in the core and relocation of melt/debris to the lower plenum (in-vessel, see TMI-2).
- Subsequently, failure of the RPV and release of corium melt into the containment (ex-vessel, see Chernobyl, Fukushima)

Core materials in Light Water Reactors

- $UO_2(/PuO_2)$ fuel:
- Zry cladding + grid spacers: 20-40 t
- Zry canister (BWR):
- Various steels, Inconel:
- B_4C absorber (BWR, VVER, ...): 0.3-2 t
- AgInCd absorber (PWR): 3-5 t

Environment

- Water, steam
 - Air After failure of RPV/primary circuit Nitrogen

BWR control blade

100-200 t

40 t

QUENCH Program at KIT

Investigation of hydrogen source term and materials interactions during LOCA and early phase of severe accidents including reflood

QUENCH Facility

- Unique out-of-pile bundle facility to investigate reflood of an overheated reactor core
- 21-31 electrically heated fuel rod simulators
- Extensive instrumentation for T, p, flow rates, level, etc.
- So far, 16 experiments on SA performed (1996-today)
 - Influence of pre-oxidation, initial temperature, flooding rate
 - B₄C, Ag-In-Cd control rods
 - Air ingress
 - Advanced cladding alloys
- Part of the validation matrix of most SA codes

QUENCH Separate-effects tests: Main setups

Thermobalance

QUENCH-SR Rig 2000 °C Induction heating Oxidising, reducing atmosphere (incl. steam) Specimens: 15 cm MS coupling

High-temperature oxidation of zirconium alloys

- In Steam, oxygen, nitrogen, air, and various mixtures
- Zircaloy-2, Zircaloy-4, Duplex, M5[®], Zirlo[™], E110 and others
- 2-cm rod segments
- Temperature: 600-1600°C
- Hydrogen behavior

Composition of cladding alloys for nuclear fuel rods

Element	Zircaloy-4	D4	M5	E110	ZIRLO
Nb	-	-	1	1	1
Sn	1.5	0.5	0.01	-	1
Fe	0.2	0.5	0.05	0.008	0.11
Cr	0.1	0.2	0.015	0.002	< 0.01

ΔH_{f} at 1500 K

 $Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$

 $Zr + O_2 \rightarrow ZrO_2$

-1083 kJ/mol

-585 kJ/mol

 $Zr + 0.5N_2 \rightarrow ZrN$ -361 kJ/mol

 Release of hydrogen and heat
Hydrogen either released to the environment or absorbed by Zr metal

Hydrogen detonation in Fukushima Dai-ichi NPPs ...

Oxidation in steam (oxygen)

Most LOCA and SFD codes use parabolic oxidation correlations (determined by the diffusion of oxygen through growing oxide scale)

Calculated oxide thickness during oxidation of Zry at 1200°C in steam

20 min at 1200°C in steam

13

Isothermal oxidation of Zr alloys in steam

- Significant differences (up to 500%) between various alloys at temperatures below 1100°C
- From 1100°C max. differences between alloys of 30% are found
- The oxidation kinetics are mainly determined by the oxide scale (breakaway, crystallographic phase, degree of substoichiometry).

Breakaway oxidation

- Loss of protective properties of oxide scale due to its mechanical failure.
- Breakaway is caused by phase transformation from pseudo-stable tetragonal to monoclinic oxide and corresponding change in density up to ca. 1050°C.
- Critical times and oxide thicknesses for breakaway strongly depend on type of alloy and boundary conditions (ca. 30 min at 1000°C and 8 h at 600°C).
- During breakaway significant amounts of hydrogen can be absorbed (>40 at.%, 7000 wppm) due to local enrichment of H₂ in pores and cracks near the metal/oxide boundary ("hydrogen pump").

Transition to breakaway

Temperature °C	Time at transition h	Oxide at transition µm
600	6-8	3-8
700	1-10	7-17
800	1-7	11-37
900	0.6-1.5	18-33
1000	0.3-0.7	43-85

Important for long-term scenarios!

Insignificant during fast transients and LOCAs

Correlation of H absorption and oxide morphology

In-situ investigation of hydrogen uptake during oxidation of Zry in steam by neutron radiography

Oxidation in atmospheres containing nitrogen

- Air ingress reactor core, spent fuel pond, or transportation cask
- Nitrogen in BWR containments (inertization) and ECCS pressurizers
- Prototypically following steam oxidation and mixed with steam

Consequences:

- <u>Significant heat release</u> causing temperature runaway from lower temperatures than in steam
- <u>Strong degradation of cladding</u> causing early loss of barrier effect
- <u>High oxygen activity</u> influencing FP chemistry and transport

Oxidation of Zr alloys in N₂, O₂ and air

Oxidation of Zr alloys in N₂, O₂ and air

Consequences of air ingress for cladding

1 hour at 1200°C in steam

1 hour at 1200°C in air

Loss of barrier effect of cladding

JAEA SA Seminar, Tokyo, 2012-10-26

Mechanism of air oxidation

- Diffusion of air through imperfections in the oxide scale to the metal/oxide boundary
- Consumption of oxygen
- Remaining nitrogen reacts with zirconium and forms ZrN
- ZrN is re-oxidized by fresh air with proceeding reaction associated with a volume increase by 48%
- Formation of porous and nonprotective oxide scales

Martin Steinbrück

1 – initially formed dense oxide ZrO_2 2 – porous oxide after oxidation of ZrN 3 – ZrO_2 / ZrN mixture 4 – α -Zr(O)

Oxidation in mixed steam-air atmospheres

Zry-4, 1 hour at 1200°C

Increasing degradation with raising content of air in the mixture

Oxidation in mixed atmospheres

1 hour at 1000 °C in steam

1 hour at 1000 °C in 50/50 steam/N₂

- Strong effect of nitrogen on oxidation and degradation
- Nitrogen acts like a catalyst (NOT like an inert gas)
- Enhanced hydrogen source term by oxidation in mixtures containing nitrogen

Boron carbide oxidation and interactions

- B₄C is widely used as control material in BWRs, VVERs, RBMKs, and some PWRs
- Integral tests (e.g. CORA, QUENCH, Phebus FPT3) have shown a strong influence of B₄C control rods on bundle degradation
- Oxidation of B₄C (containing melts) in steam produces large amounts of hydrogen and heat
- B₄C oxidation causes the formation of gas phase carbon (CO, CO₂, CH₄) and boron (H₃BO₃, HBO₂) compounds which affect the FP chemistry

Boron carbide in LWRs

Reactor	Mass B₄C, kg
German BWR line 69	1200
German BWR line 72	1700
GE BWR-3 (Fukushima Daiichi, unit 1)	680
GE BWR-4 (Fukushima Daiichi, unit 2-4)	960
VVER 1000	250
FRAMATOME PWR 1300MW	320
FRAMAROM PWR 1450MW	340
EPR	440

Degradation of B₄C control rods (1-pellet)

Post-test appearance and axial cross section of B₄C/SS/Zry specimens after 1 hour isothermal tests at temperatures between 1000 and 1600 °C

28

Degradation of B₄C control rods (single rod)

Local oxide shell failure and oxidation of B₄C

ZrO₂ scale enclosing the absorber melt

- Partly dissolved B₄C pellet

Relocated absorber melt

Degradation of B₄C control rods (PWR bundle test)

Bundle cross sections

QUENCH-07 with B₄C *CR failure at* 1312°C

QUENCH-08 w/o B₄C

550 mm (T_{max}≈1000°C)

750 mm (T_{max}≈1300°C)

950 mm (T_{max}≈1500°C)

Degradation of B₄C control blade (BWR bundle test) CORA-16

16-08 (1145mm), bottom view

16-03 (310mm), top view

-07 (963mm), top view

- Complete loss of absorber blade
- Dissolution of cladding and fuel
- Massive melt relocation (SS, Zry, UO₂)

16–09 (525mm), top view center grid spacer elevation

16-01 (110mm), top view

Degradation of BWR control blades

2. Interaction between B_4C/SS melt and Zry channel box

3. Interaction between $B_4C/SS/Zry$ melt with fuel rods + oxidation

SS absorber blade Zry channel box wall BC

Martin Steinbrück

B₄C

Eutectic interaction of stainless steel with B₄C

1 h at approx. 1250 °C

Complete liquefaction of stainless steel

1/3 of SS liquefied

JAEA SA Seminar, Tokyo, 2012-10-26

Institute for Applied Materials

Eutectic interaction of stainless steel with B₄C

Martin Steinbrück

Rapid and
complete melting
of SS at 1250°C
starting at B₄C/SS
boundary

Eutectic interaction of stainless steel with B₄C

200 µm

----- Initial geometry of B₄C crucible

Solidified melt

Institute for Applied Materials

$$\begin{split} B_4 C + 7H_2 O(g) &\to 2B_2 O_3(l) + CO(g) + 7H_2(g) \\ B_4 C + 8H_2 O(g) &\to 2B_2 O_3(l) + CO_2(g) + 8H_2(g) \\ B_4 C + 6H_2 O(g) &\to 2B_2 O_3(l) + CH_4(g) + 4H_2(g) \end{split}$$

JAEA SA Seminar, Tokyo, 2012-10-26

 $B_2O_3 + H_2O(g) \rightarrow 2HBO_2(g)$ $B_2O_3 + 3H_2O(g) \rightarrow 2H_3BO_3(g)$

Oxidation kinetics of B₄C in steam

Strongly
dependant on B₄C
structure and
thermo hydraulic
boundary
conditions like
pressure and flow
rate

Gas release during oxidation of B₄C (melts)

Hydrogen

- Up to 290 g H₂ per kg B₄C
- Up to 500 kg additional H₂ production for BWRs
- Carbon monoxide/dioxide
 - Ratio depending on temperature and oxygen activity
 - Non-condensable gases affecting THs and pressure
 - CO combustible and poisonous
- Methane
 - Would have strong effect on fission product chemistry (iodine!)
 - Bundle experiments and SETs reveal only insignificant release of CH₄
- Boric acids
 - Volatile and soluble in water
 - Deposition at colder locations in the circuit

Gas release after failure of B₄C CR segment

Martin Steinbrück

39

Hydrogen release in QUENCH bundle experiments

Comparison of hydrogen release during the various test phases of bundle tests QUENCH-07 (with B_4C) and QUENCH-08 (w/o B_4C)

Oxidation of B₄C absorber melts

Transient oxidation of $B_4C/SS/Zry-4$ absorber melts in steam between 800 and 1550 °C

before oxidation

after oxidation

Hydrogen release (~ ox. rate) during oxidation of absorber melts and pure CR components

Energetic effects of B₄C oxidation

- Oxidation of B_4C in steam: 13 MJ/kg_{B4C}
- Oxidation of B_4C in oxygen: 50 MJ/kg_{B4C}
- Significant contribution to energy release in the core

For comparison:

- Oxidation Zr in steam:
- Fuel value of mineral oil:
- Fuel value of black coal:

6 MJ/kg_{Zr}

12 MJ/kg_{oil}

30 MJ/kg_{coal}

Possible consequences for Fukushima accidents

Boiling water reactors with cruciform-shaped blades

- 1 control blade = 7 kg B₄C + 93 kg SS
- Complete liquefaction of the blade at T>1200°C

Fukushima Daiichi NPPs:

- Unit 1: 97 control blades
- Unit 2-4: 137 control blades
- Complete oxidation of B₄C inventory by steam:
- 195/275 kg H₂
- ▶ 2700/3800 kWh (10/14 GJ)

Summary

- Chemical interactions may strongly affect the early phase of a severe accident
- The main hydrogen source term is produced by metal (B₄C)-steam reactions
- Exothermal chemical reactions can cause heat release larger than the decay heat and hence strongly contribute to the power generation in the core
- Nitrogen does not behave like an inert gas during the conditions of a severe accident
- Eutectic interactions between the various materials in the core (i.e. B₄C-SS, B₄C-Zry) cause liquefaction of materials significantly below their melting temperatures
- Boron carbide may (at least locally) significantly contribute to release of heat, hydrogen and other gases

The QUENCH team at KIT

Masaki Kurata (JAEA) for inviting me

YOU ... for your attention

Early core degradation with special emphasis on oxidation and B₄C control rod failure

Martin Steinbrück

International Seminar on Fuel Degradation Methodology in Severe Accidents - Tokyo, Japan, 26 October 2012

Institute for Applied Materials IAM-AWP & Program NUKLEAR

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Oxidation of Zr alloys in various atmospheres

Martin Steinbrück

JAEA SA Seminar, Tokyo, 2012-10-26

Institute for Applied Materials

200 L

Reaction of α -Zr(O) with nitrogen

1200 °C, 6.5 wt% O

BOX rig for investigation of materials at high temperatures (1700°C) in defined atmospheres

In-situ investigation of hydrogen diffusion in Zry

Martin Steinbrück

JAEA SA Seminar, Tokyo, 2012-10-26

Institute for Applied Materials

NETZSCH® steam furnace for TGA

Up to 100% steam Up to 1250°C

Single-rod QUENCH tests

- I5-cm rods filled with ZrO₂ pellets
- Direct inductive heating till melting temperatures
- Video recording
- Mass spectrometer for analysis of hydrogen release

Reflood from 1400°C

Phase diagram Zr - O

53

Institute for Applied Materials

Phase diagram Zr - H

Phase diagram iron - boron

55