

Oxidation and dissolution of binary Ni-Cr and ternary Ni-Cr-Al alloys in stagnant liquid lead at 750°C

O. Picho, C. Schroer, V. Trouillet and J. Konys

Application of Lead Technology to Subcritical (ADS) and Critical (LFR) Nuclear Systems/Reactors

LFR

- One of the concepts for the 4th generation of nuclear power plants (Gen IV)
- In the long-term, Pb as primary coolant at maximum 800°C
- Short- to mid-term: Pb- or LBE-cooled at 450 550°C

Corrosion of structure materials/ steels

- Dissolution of steel constituents
- Minimized by adding oxygen to liquid metal/ oxidation

ADS

- Transmutation of nuclear waste
- Power generation
- Liquid lead (Pb) or lead-bismuth eutectic (LBE) as spallation target and primary coolant
- Maximum temperature, typically
- 450 550°C

Motivation

At T > 600°C Ni-based alloys because of appropriate thermomechanical

properties

BUT:

- Selective leaching of Nickel
- Penetration of liquid Pb into the material

Which <u>Cr-content</u> can suppress <u>Ni-dissolution ?</u>

Material

Elements	Ni	Ni25Cr	Ni30Cr	Ni35Cr	Ni48Cr	Ni35Cr1AI	Ni35Cr3AI	Ni35Cr5Al
Ni (mass%)	99,9	74,36	69,36	64,43	52,39	63,74	61,74	60,31
Cr (mass%)		25,33	30,35	35,25	48,01	35,10	35,20	34,64
AI (mass%)		0,31	0,29	0,32	0,30	1,10	3,05	5,04
Ti (mass%)					0,30			

Experimental conditions

- Static liquid lead at 750°C as basic for modelling of corrosion behavior
- Co=10⁻⁶ mass % corresponds to typical reactor operating conditions

Corrosion test apparatus

• oxygen potential (U_{1,2}/V)

```
temperature (T<sub>1,2</sub>/°C)
```

Experimental procedure

Quantification of specimens bevor and after tests

Distanz/µm IAM-WPT-KOR

XPS-Analysis from binary Ni-Cr-alloys with 25 and 48 mass% of Cr

- Ni25Cr has higher concentration of Ni-Oxide on the material surface
- Both materials provide a thin Cr-oxide film

Binary Ni-Cr alloys

Material degradation

Ni25Cr

Analysis of oxidation and dissolution behavior of binary NiCr-alloys

Cr-Oxidation

$$m_{Cr_{depletion}} / \frac{g}{cm^2} = \rho_{NiCr} (\chi_{Cr}^0 - \chi_{Cr}^*) x_{deplet}$$

$$m_{c_{r_{consumption}}} / \frac{g}{cm^2} = \rho_{NiCr} \chi_{Cr}^0 x_{consum}$$

$$m_{Cr_{oxidation}} / \frac{g}{cm^2} = \rho_{Cr_2O_3} \chi_{Cr_2O_3} x_{oxide}$$

Ni-Dissolution

$$m_{Ni_{dissolution}} / \frac{g}{cm^2} = \rho_{NiCr} \chi^0_{Ni} x_{dissolved}$$

Corrosion mechanism of binary Ni-Cr-alloys

Ni25-35Cr

Corrosion mechanism of binary Ni-Cr-alloys

Karlsruher Institut für Technologie

Ternary Ni35Cr1-5Al alloy

Initial Phase/24 h

Ni35Cr1AI

Ternary Ni35Cr1-5Al alloy

Ni35Cr3Al

Initial Phase/ 24 h

120 h

surface/ 120 h

Ternary Ni35Cr1-5Al alloy

Ni35Cr5Al

Initial Phase/ 24 h

120 h

IAM-WPT-KOR

Material loss depending on Al-content

Corrosion mechanism on ternary Ni35Cr-alloys

Conclusions

- 1. The significant corrosion of binary (Ni25-35Cr mass%) and ternary Ni-Cr-alloys (1-3 mass%) could be explained by:
 - a) formation of porous oxide film away from material surface
 - b) intergranular corrosion
 - c) spallation of oxide film
- 2. This is supported by high Ni and Cr-dissolution instead of only oxidation of Cr. Also addition of less noble Al leads to a decrease of Cr-oxidation, but the Al-content is not high enough to form stable Al_2O_3 .
- 3. Increasing of Cr (48 mass%) and Al-content (5 mass%) improves corrosion performance with respect to close position of the dense oxide layer to the material surface.
- 4. Controlling of dissolution process (reduction of metal recession) by addition of alloying elements is a main issue for further investigation of both materials.

Thanks for your attention

Funding by the EURATOM 7th Framework Programme within the cross-cutting project GETMAT (contract no.FP7-212175) is gratefully acknowledged.