

OZONE OBSERVATIONS AT CAPE POINT (1983 - 2010)

E-G. Brunke, T. Mkololo, C. Labuschagne and H.E. Scheel

SASAS Conference, Pretoria, Sep. 2011

Overview

- 1) Introductory remarks
- 2) Divide O_3 time series (1983 2010) into specific time periods
- Use different approaches (e.g. moving averages, anomalies) to determine growth rates
- 4) Analyze ozone data in terms of six percentiles
- 5) Characterize air between 4 m and 30 m intakes
- 6) Summary and conclusions

Site description:

Cape Point (GAW) station: 34^o S; 18^o E; 230 m asl.

Situated on a rock face within a nature reserve at the southern point of the Cape Peninsula. Station 60 km south of Cape Town. Shrub (fynbos) vegetation. Winter rainfall. Prevailing winds from SE; however, main large-scale advection from SW.

Instrumentation:

3 analysers Thermo Electron TE 49. Air intakes at 4 m; 14 m and 30 m. Calibration tied to the WMO/GAW scale.

Data sets for surface ozone:

30 m: 1983 – 2010 with major gap in 1990; 4 m: 2000 - 2010 Data filtered for background conditions stored separately.

Years of general tendency change: 1989 - 1991, when an overall O₃ increase began.

Three ozone air intake systems at Cape Point

Dominance of subsiding air masses at Cape Point

Cape Point: Height of NOAA trajectories (March 1999 - September 1999)

Plot of the height of 10-day back trajectory data points versus latitude for data from March – September 1999. Trajectories by courtesy of NOAA CMDL (Joyce Harris).

(Taken from: Brunke and Scheel, Final Project Report 2002)

Time series for 30-m air intake, statistical background filter

O_3 monthly median values (1991 – 2010) and 12-month moving averages together with linear regression

CPT: O3, 30 m_all (1991-2001; 2002-2010)

Weather Service

Definition of concept of anomalies

1) Monthly anomaly (e.g. December) for a given year (yi) is calculated as follows:

```
Dec_yi = Dec_mean_yi - Dec_mean_all
```

where Dec_mean_all is the average of all Decembers for the time period being investigated.

2) Seasonal anomaly (e.g. summer) for a given year (yi) is calculated as follows:

Summer_yi = [(Dec_yi - Dec_mean) + (Jan_yi - Jan_mean) + (Feb_yi -Feb_mean)]/3

where Dec_mean is the average of all Decembers for the respective time period.

The above processes deseasonalize the data.

30-m air intake, unfiltered data

Annual Trends

Comparison of anomalies (relative and absolute) with 12-month moving averages

30-m air intake, unfiltered data

Average ozone increase according to anomalies of the periods 1990 – 2009, 1990 – 1999, 2000 - 2009

Annual Trends

Seasonal Trends: Max. SON, Min. JJA

Average seasonal variations (1995 – 2008) 6 Anomalies by season: Overview (1990–2009) with flat July-September maximum and 4 minimum in January. 2 CPT: O₂ - Seasonal Variations Anomaly [ppb] 35 -30 an-98 Jan-02 Jan-90 Jan-06 Jan-10 O₃ (ppb) -2 25 Anom DFJ Anom MAM Anom SON 20 Linear (Anom JJA) -4 Linear (Anom_DFJ) Linear (Anom_MAM) 15 Linear (Anom SON) - Avg (1995-2008) ±1 std. dev. -6 10 2 10 11 12 1 5 9 3 Month Anomalies by season: Regression lines only 2 DFJ MAM SH summer SH autumn 1 Anomaly [ppb] **0.17** (0.09 – 0.25) **0.18** (0.10 – 0.25) 17.0 23.0 0 Jan-02 Jan-94 Jan-90 Jan-06 Jan-10 Anom_JJA -1 JJA SON Anom_DFJ SH winter SH spring Anom_MAM Anom_SON -2 **0.12** (0.03 – 0.21) **0.21** (0.10 – 0.31) Linear (Anom_JJA) Linear (Anom DFJ) 26.5 29.2 —Linear (Anom MAM) -3 —Linear (Anom SON)

Cape Point surface ozone:

Site: CPT Annual trends	Slope and 95% confidence interval	From monthly mean anomalies (all available data) 30-m air intake	Statistical background filtering applied	4-m air intake (all data) 2000 - 2009
1990 – 2009	Slope [ppb/yr]	0.17 (0.14 – 0.20)	0.17 (0.15 – 0.20)	
1990 - 1999	Slope [ppb/yr]	0.30 (0.22 – 0.38)	0.34 (0.27 – 0.40)	
2000 - 2009	Slope [ppb/yr]	- 0.06 (- 0.14 - 0.02)	- 0.06 (-0.13 - 0.01)	- 0.07 (-0.24 - 0.10)
Significant positive rates in bold None of the negative rates is significant				
Seasonal trends (30 m all)	DFJ SH summer	MAM SH autumn	JJA SH winter	SON SH spring
1990 – 2009	0.17 (0.09 – 0.25)	0.18 (0.10 – 0.25)	0.12 (0.03 – 0.21)	0.21 (0.10 – 0.31)
1990 - 1999	0.08 (– 0.14 - 0.29)	0.27 (0.14 – 0.41)	0.37 (0.08 – 0.65)	0.48 (0.18 – 0.77)

O₃ growth rates calculated for 12-month moving averages of different percentiles for 1991-2001 and 2002-2010

Characterisation of the air between 4 m and 30 m

<u>Goal</u>: Estimate of representativeness of the air at the 2 intake heights. <u>Approach</u>: 1/2-h means for the 2 heights, sorted as maximum and minimum of the data pairs. Calculation of monthly means, visualisation of both time series together with linear regression.

<u>*Result:*</u> Between 4 and 30 m the O_3 maxima and minima within the halfhour periods differ only by 1.5 ppb on average. No indication of different trend behaviour.

The 2000-2009 O₃ averages over the monthly means for 4 m and 30 m agree within \approx 0.2 ppb.

CPT (4 m & 30 m): Min-Max-comparison (monthly means) determined from half-hourly data pairs (2000 - 2009)

· 4 m, d ata since

2000

30 m

CPT, air

heights

intake

Summary and Conclusions

 Time series can be roughly divided into 3 parts with smooth transitions: 1983 – 1989/90: No clear trend behaviour, 2 major gaps.
1990/91 – 2001/02: Ozone increase statistically significant.
2002/03 onwards: Stabilization (insignificant growth rates).

> The significant O_3 increase between 1990/91 – 2001/02 took place without seasonal dependence.

Different statistical techniques yield compatible growth rate estimates.

► O_3 growth rates of six percentiles show that the rise for 1991-2001 and the slight decrease for 2002-2010 is represented by the total O_3 population, thereby suggesting an overall hemispheric process. Regional driving forces might have contributed to the systematic differences within the suite of percentiles of both periods.

 \blacktriangleright Long-term trends of surface O₃ at Cape Point are not critically dependent on air intake height.

Since a great deal of the results cannot be explained from the observations alone, modelling studies are called for.

Acknowledgements

Local authorities: South African National Parks (SANP) Portnet

SASAS Conference, Pretoria, Sep. 2011