In situ X-Ray Reflectivity measurements during Sputtering of Vanadium Carbide thin films

M. Kaufholz¹, B. Krause¹, S. Kotapati¹, M. Stüber², S. Ulrich² and T. Baumbach¹,³

¹ Institut für Synchrotronstrahlung, Karlsruher Institut für Technologie (KIT), ² Institut für Angewandte Materialien - Angewandte Werkstoffphysik, Karlsruher Institut für Technologie (KIT), ³ ANKA, Karlsruher Institut für Technologie (KIT)

Content

- Motivation
- In situ X-Ray Reflectivity
- Three Examples:
 - In situ XRR at different DC Power
 - In situ XRR at different Growth Temperatures
 - Interruption of Deposition
- Summary & Outlook
Motivation

Vanadium Carbide (VC$_{1-x}$)

- Growth of thin films by Sputtering
- Hard coating material for tools

deposition conditions and **microstructure formation**

define **mechanical properties**

→ **Understand growth process depending on sputtering conditions**

→ **Investigation needs suitable methods**

- **nondestructive** monitoring of growth process
- resolution in **sub-nanometer scale**
- compatibility with the **gas atmosphere**
- investigation of
 - **polycrystalline** material
 - **high deposition rates** (0.22 nm/s @ DC Power 200 W)

In situ X-Ray Reflectivity

Basics of X-Ray Reflectivity

- Electron density (‘Critical Angle’)
- Thickness (‘Kiessig fringes’)
- Roughness (‘Slope’) [1]

Description by Parratt-Algorithm [2]

- Fully dynamical description of XRR

Two options to measure **in situ** XRR

1. Full angular range XRR
2. XRR at a fixed angular position

In situ X-Ray Reflectivity measurements during Sputtering of Vanadium Carbide thin films

Experimental Setup

Setup @ MPI-Beamline:
- Energy: 10 keV
- Beamsize: 300µm x 200µm
- Optics
 - Resolution in q_z: ~ 0.005 Å⁻¹
 - Detector: Pilatus 1K
- Resolution in time: ~1.1-2.3 s

Sputter conditions [1]:
- Target: VC₁₋ₓ
- Substrate: Si(100) with natural oxide
- Target-substrate Distance: 10 cm
- Argon Pressure: 2 x 10⁻³ mbar
- Deposition rate 0.22 nm/s @ 200 W

In situ X-Ray Reflectivity: “full angular range”

- Measure **full angular range**

- High deposition rate of 0.22 nm @ 200 W → ~90nm deposition/XRR
- Possible electron density and roughness changes
- Interpretation of XRR curve difficult
In situ X-Ray Reflectivity: “fixed angular position”

- Detector and sample are at a **fixed angular position**
- Measuring Pre- and Post-growth full angular range XRR

Simulation Input:
- DC Power: 200 W → Deposition Rate: 0.217 nm/s
- $\alpha_i = 1.6^\circ$

In situ X-Ray Reflectivity: “fixed angular position”

- Detector and sample are at a **fixed angular position**
- Measuring Pre- and Post-growth full angular range XRR

Simulation Input:
- DC Power: 200 W → Deposition Rate: 0.217 nm/s
- $\alpha_i = 1.6^\circ$
In situ X-Ray Reflectivity: “fixed angular position”

- Detector and sample are at a **fixed angular position**
- Measuring Pre- and Post-growth full angular range XRR

Simulation Input:
DC Power: 200 W → Deposition Rate: 0.217 nm/s
\[\alpha_i = 1.6^\circ \]
In situ X-Ray Reflectivity: “fixed angular position”

- Detector and sample are at a **fixed angular position**
- Measuring Pre- and Post-growth full angular range XRR

Simulation Input:
DC Power: 200 W → Deposition Rate: 0.217 nm/s
\[\alpha_i = 1.6^\circ \]

In situ X-Ray Reflectivity: “fixed angular position”

- Detector and sample are at a **fixed angular position**
- Measuring Pre- and Post-growth full angular range XRR

Simulation Input:
DC Power: 200 W → Deposition Rate: 0.217 nm/s
\[\alpha_i = 1.6^\circ \]
Example 1: Determination of Deposition Rate depending on DC Power at RT

- Increase of DC Power by $\Delta P = 25\,\text{W}$ every 250s
- $\alpha_i = 1.6^\circ$:
 - Error due to changes in electron density <1%
 - Sensitive to deposition rate

$\text{Deposition Rate} \sim \text{DC Power}$

Example 2: Monitoring of Roughness depending on Growth Temperature

- Increase of Temperature leads to increase of Roughness
- Consistent with ex situ AFM

Ex situ: AFM
Example 3: Different Electron Densities due to Interruption of Deposition

- Interruption of deposition after 200s @ RT and DC Power of 200 W

Summary

- *In situ* X-Ray Reflectivity is suitable for investigation of VC$_{1-x}$
 - Sensitive to
 - Deposition Rate
 - Roughness
 - Density
 - Sensitive to different sputtering conditions

Outlook

- Simulation of *in situ* XRR curves
 - Growth Model (Scaling law)
 - Include diffuse scattering
 - Limits of method
- Combining with other methods for a better understanding
 - *In situ* & *ex situ* X-Ray Diffraction and Absorption Spectroscopy
 - XPS, AFM, TEM, … (in UHV conditions)
 - Measuring Hardness via Nano-/Microindentation
Acknowledgements

- M. Mantilla for technical support @ MPI Beamline @ ANKA
- H. Grüße for technical support @ UHVLab @ ANKA
- S. Darma, J. Gemmler for fruitful discussion
- Financed in the framework of Excellence Initiative within the project KIT-Nanolab@ ANKA

Thank You for Your Attention!