

Advanced Processes for T-Permeation and Corrosion Barriers for the $DCLL_{mod.}$ concept

J. Konys, W. Krauss, N. Holstein, S.-E. Wulf

INSTITUTE FOR APPLIED MATERIALS RESEARCH – MATERIAL PROCESS TECHNOLOGY | CORROSION DEPARTEMENT

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Advanced processes for T-permeation and corrosion barriers

Outline

- T-permeation and/or anti-corrosion barriers for the DCLL_{mod} blanket in ITER (and for DEMO?)
 - → why Al-based barriers?
- Overview of previous coating activities
- New electrochemical AI coating processes
 - ECA, AI deposition from organic aprotic electrolyte
 - ECX (X = AI, W, Ta ...), deposition from ionic liquid + metal salt
- Conclusions

The HCLL (He-PbLi) TBM (and DEMO) blanket Application of T-permeation and/or anti-corrosion barriers

DEMO HCLL MAIN FEATURES

2m x 2m modules

RAFM steel (EUROFER)

He (8 MPa, 300-500°C)

Liquid Pb-15.7Li (eutectic) as breeder and multiplier

PbLi slowly re-circulating (10/50 rec/day)

90% ⁶Li in PbLi

Pb-Li velocities in breeding unit ~ 1 cm/s range

TBR = \leq 1.15 with 550mm Breeder radial depth

Lifetime 7.5 MWy/m²

Why do we need TPB's (Tritium Permeation Barriers) for Liquid Breeder Concepts?

Safety and cost Its to reduce the tritium release from the PbLi into the coolant significantly (water for WCLL and helium for $DCLL_{mod.}$ blanket concept) \rightarrow limit for ITER site 1gT/a

- EU Fusion Technology program started to select FeAI-based coatings with alumina as a thin top layer in the mid 90's. Later on, other type of coatings were also investigated, but with much less intensity and less claim for industrial relevance (ca. 2007+).
- During the phases one and two of the European R&D process, the manufacturing technologies for the coatings and their technical characterization were summarized in reports between 1998 and 2003.

Structure and technical requirements for an Al-based T-permeation barrier

Requirements for a tritium permeation barrier

- Reduction of T-permeation by a factor of <100 in Pb-15.7Li (1000 in gas phase)</p>
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-15.7Li (re-oxidizing)
- Long-term corrosion resistant in Pb-15.7Li up to ca. 550°C
- High content of low activation elements
- No negative influence on mechanical properties of the steel due to the coating process
- The coating process must be of industrial relevance

Thermodynamics of Al/Al₂O₃-based T-permeation barriers

Electro-chemistry for coating application

EC measurements of protic and aprotic metal deposition systems

Electrochemical aluminium deposition

- properties of organic aprotic electrolyte systems -

Solvens		Toluol, Xylol Diisopropylether		Quarternay Amin salts e. g. Ethylmidazolium chloride
Ionic solubility of solvens		No		Yes
Al-carrier system		$KF \cdot 2AI(R)_3$ R = C _n H _{2n+1} mit n= 2-6		AICI ₃
Temperature		100°C		RT 200°C
Reactivity	Water	extremly high		modest
	Air	extremly high		low
	Temperature	modest		Stable up to 300°C
Toxicology biodegrability		Aromates: ++/		Amines: -/+
Max. conductivity [mS/cm]		19,5		22,0
		ECA The second s		ECX
		Al-Alkyl- Acryl-Complex in Toluol resp. Alkylether	K K	$ \begin{array}{c} AI^{3+} + 3 \text{ CI-} \\ \rightarrow \text{ EMIM-AICI}_4 & \swarrow & X^{\odot} \\ & \swarrow & \swarrow & N \\ \oplus & & & R \end{array} $

Development of electrochemical Al coating process (ECA)

Process specifics

Organic electrolyte, Al-alkyle, under cover gas Deposition temperature ca. 100°C, rate \approx 12 µ/h More complex geometries can be coated; even inside tubes

Result of ECA development

- Electrochemical coating applicable to functional scales in TBM's
- Barrier function tested in corrosion, successfully
- Salt-based processes have to be developed for higher compositional flexibility
- Reason: Electro-negativity of refractory metals and unique behavior

Development of electrochemical Al coating process (ECX, X=AI, W, Ta...)

- Ionic liquids (IL's) + metal salts as new advanced electrolytes -

Ionic liquids as electrolytes

- Structure like ionic salts (similar to solid ionic crystals: e. g. NaCl), 100% ionic
- No additional solvent is necessary
- Mostly liquid at "room temperature" (≤ 100°C)

Major properties

- Thermally very stable (> $300^{\circ}C$) \rightarrow low vapor pressure
- Not flammable
- High variability of chemical structure
- Good miscibility with inorganic metal salts as "carriers" for metal deposition, e.g. AICl₃
- High electrical conductivity
- Electrochemically very stable against oxidation and/or reduction
- High bio-compatibility

IL's are superior for use for electrochemical AI deposition

Development of coatings for corrosion / T-permeation barriers Development of electrochemical AI coating process based on ionic liquids (ECX process)

- The use of AICl₃:[Emim]Cl (1,5:1, Lewis acidic) ionic liquids (ILs) as electrolyte for Alelectrodeposition provides advantages in comparison to Lewis basic or neutral electrolytes
 - Increased electrochemical stability during electrodeposition
 - Commercially available: constant composition and quality, available in great quantities

Industrial relevance is given

- ECX process provides better flexibility than ECA process
 - Adjustable deposition parameters: current density, temperature, pulse plating possible, ...
 - Adjustable AI coating properties (morphology, deposition rate, ...)

Development of electrochemical aluminium coating process (ECX)

Karlsruhe Institute of Technology

- Good adhesion of the coating to Eurofer substrate: depends on pre-treatment of the sample
- No delamination of layers during cutting process

- Deposition rates up to 25 µm/h, depending on current density
- Smooth surface in the center of the sample, at the edges even higher layer thicknesses, due to current density focusing

Heat treatment of AI layers for corrosion / T-permeation barriers Treatment of AI coatings produced by EDX process (Lewis acidic IL)

Layer thickness after heat treatment: approx.50µm (center)

Actual work:

- Ongoing examination of deposition parameters:
 - Adhesion to the substrate, reproducibility, influence on coating properties
 - Influence of sample geometry

Optimization of heat treatment parameters (depending on parameters during ECX process)

Conclusion and outlook

- Barriers on Eurofer steel structures, based on Fe-Al/Al₂O₃, are appropriate to fulfill the requirements for T-permeation reduction and corrosion protection in PbLi operated systems, including DCLL_{mod.} blankets.
- Electrochemical deposition process ECX has shown its appropriateness for manufacturing of thin Al-based coatings with high reproducibility. The development of suitable heat treatment sequences to form the outermost alumina layer has been successful, too.
- Qualification outstanding concerning corrosion stability, T-permeation, thermal cycling and irradiation
- Development towards real application necessary under ITER TBM
- Transfer to DCLL_{mod.}?