

Advances in technologies for power exhaust solutions

J. Reiser¹, M. Rieth¹, A. Möslang¹, A. Hoffmann²

¹ Karlsruhe Institute of Technology, Institute for Applied Materials, Germany

² PLANSEE SE, Reutte, Austria

XXI Conference, Italian Association of Science and Technology, 15-17 May, Catania

INSTITUTE FOR APPLIED MATERIALS, APPLIED MATERIALS PHYSICS

www.kit.edu

Contents

- Electrical industry
 - How to remove high heat fluxes in electrical industry?

Fusion applications

How to remove the heat flux in Tore Supra, W7-X and ITER

Ductilisation of tungsten (W)

- Alloying, composite material, UFG
- W-laminates made of W-foil (UFG)
- W-laminates for high heat flux applications

Summary of heat fluxes

Sun, beach

Rocket nozzle

NASA

Solar tower

ABENGOA Solar

Electrical ind.

PLANSEE SE

Institute for Applied Materials, Campus North, KIT

What can we learn from electrical industry?

Request

- heat load: 0,5 50 MW/m²
- Max. temp.: 150°C

Solution

- MoCu materials
 - Cu: high thermal conductivity, k
 - Mo: low coefficient of therm. exp., α

Applications

- Radar applications
- High power LEDs

Heat load and fusion

Heat load and fusion

Tore Supra, tokamak, limiter

W7-X, stellerator, divertor

Institute for Applied Materials, Campus North, KIT

Fabrication technology

Helium-cooled divertor and tungsten (W)

- Most of the He-cooled divertor concepts ask for tungsten as a structural material
- Requirement:
 - High fracture toughness, K_{IC} [MPa(m)^{1/2}]
 - Low brittle-to-ductile transition temperature (BDTT) measured by Charpy
 - Operation conditions: 100 bar, T = 600°C 800°C

Contents

- Electrical industry
- Fusion applications
- Ductilisation of tungsten (W)
 - Alloying, composite material, UFG
 - W-foil (UFG) laminates
- W-laminates for high heat flux applications

What is/are the controlling factor/s of the BDT?

disl. emission = disl. nucleation + disl. glide

T_{BDT} is strain rate dependent: △H_{BDT} = 1,05 ± 0,05 eV ~ △H_{kp} > △H_{edge}
→ BDT mobility controlled
pronounced influence of disl. sources on K
→ nucleation-controlled

What is/are the controlling factor/s of the BDT?

Distribution of dislocations ahead of crack tips in tungsten single crystal

polyc. W: grain boundary crack

S.M. Ohr (1980)

W foil: in-situ TEM tensile test

M. Klimenkov, U. Jäntsch, KIT (2013)

S.M. Ohr (1980)

Institute for Applied Materials, Campus North, KIT

Ductilisation strategies

→ pure W is the best W (in terms of ductility measured by Charpy)

Institute for Applied Materials, Campus North, KIT

Ductilisation strategies

Alloying (WRe) vs. UFG

Our idea: W-laminates made of W-foil (UFG)

Is it possible to expand the ductility and toughness of a W-foil (UFG) to the bulk?

What is special about UFG?

- Which is the mechanism of deformation / plasticity?
- According to M.A. Meyers (2006): three regimes

Mechanism of deformation of W-foil (UFG)?

- My personal assumptions: dislocation annihilation on the free surface
 - Slip direction: <111>
 - Slip plane: $\{110\}$, $\{112\}$, $\{123\} \rightarrow$ multiple cross slip

Mechanism of deformation of W-foil (UFG)?

- My personal assumptions
 - Dislocation annihilation
 - High amount of mobile edge dislocations
 - Multiple slip at the GB
 - Grain rotation / grain boundary sliding
 - **.**..

Y. Xi, Oxford (2012)

J. Koike (2004)

J. Koike (2004)

Contents

- Electrical industry
- Fusion applications

Ductilisation of tungsten (W)

- Alloying, composite material, UFG
- W-foil (UFG) laminates
- W-laminates for high heat flux applications

Microstructure of W-foil, 100 μ m

- Grain size:
 - As-received: 0,5 x 3 x 15 μm³
 - 1 h / 2700°C: 100 x 100 x 100 μm³
- Texture: {100} <011> ; rotated cube
- Sub grains: nearly free from disl.
- Begin rxx: 1200°C

(pictures: J. Reiser, Y. Xiaoou, D.E.J. Armstrong)

Tensile tests on W at 600°C

Tensile tests on W at 600°C

-W 0.1 mm, 0°

-- W 0.1 mm. 45°

••• W 0.1 mm. 90°

W0.1, 1 h / 2000°C

20 MPa

Minhouse

300

200

100

0

stress (MPa)

40

Elongation (%)

60

80

20

0

Fig. 3

 $20 \text{ MPa} * 0.2 \text{ mm}^2 = 4 \text{ N}$ ٠

strain (%)

30

40

20

Serrated flow, strain ageing, discontinuous slip ٠ (Portevin-Le Chatelier-Effect PLC)

Literature:

10

- [1] E. Lassner, W.-D. Schubert, Tungsten (1999) p. 25.
- [2] Ch. Ritches, A. Luft, D. Schulze, Kristall und Technik, 13, 7 (1978) 791.

W-laminate: microstructure

The mechanical properties of a W-laminate depend on

- the condition of the W-foil as well as
- the interface

after the joining process.

W-laminate: microstructure

- Condition of the W-foil:
 - As-received
 - Recrystallized
- Condition of the interface:
 - Wettability
 - Solid solution
 - Intermetalic compounds

W-laminates: Charpy impact tests

- Can the ductile properties of a W-foil be transferred to the bulk?
 - As-received: improvement of 300°C

W-laminates: Charpy impact tests

- Can the ductile properties of a W-foil be transferred to the bulk?
 - As-received: improvement of 300°C
 - Recrystallized: improvement of 500°C

W-laminates: energy dissipation

- How do laminates dissipate energy?
- 1) Pl. deformation of the W-foil
- 2) Pl. deformation of the interlayer
- 3) Creation of surface by crack deflection \rightarrow non-plastic energy dissipation

W-laminates: crack behavior

How does the crack path looks like?

W-laminate, WCu, L-S, RT

W-laminates: pipes

- Howo can a tungsten pipe be produced?
 - Extrusion \rightarrow very challenging
 - Drilling a hole in a rod
 - NEW: by rolling up a W-foil

W-laminates: pipes

Contents

- Electrical industry
- Fusion applications
- Ductilisation of tungsten (W)
 - Alloying, composite material, UFG
 - W-foil (UFG) laminates
- W-laminates for high heat flux applications

W-laminates for high heat flux applications

- Electrical industry fusion application → Mo/W-laminates
 - Cu: high thermal conductivity, k; Mo: low coefficient of thermal expansion, α
 - High toughness, K_Q, and ductility

Electrical ind.

PLANSEE SE

Institute for Applied Materials, Campus North, KIT

W-laminates for high heat flux applications

W-laminates for water- and helium-cooled divertors

W-laminate as interlayer

T. Huber, A. Zabernig PLANSEE, NDT by ultrasonic

H. Greuner, B. Boeswirth GLADIS, IPP, Garching

H. Greuner, B. Boeswirth Test: 100 Zyklen, 6 MW/m²

W-laminates for high heat flux applications

Solar tower

Burst test, RT, 1000 bar (in cooperation with PLANSEE SE, T. Huber, A. Zabernig)

ABENGOA Solar

He-cooled divertor, pipe concept

Institute for Applied Materials, Campus North, KIT

I will not spend 1 000 000 € for the one that...

- Inductive the controlling mechanism of the BDT.
 - ... explains the deformation mechanism of W UFG.

"The intermediate grain size regime (10 nm – 1 μ m) is less well understood."

M.A. Meyers (2006)

W single crystal:

"The understanding of slightly more complicated microstructures and particularly of pre-deformed single crystals and/or textured and possibly pre-deformed polycrystalline materials **is far less well understood**."

P. Gumbsch (2003)

Thank you for your attention

The authors are grateful to:

PLANSEE SE, University of Oxford, EFDA and our colleagues from IAM (KIT).

