

Microstructure and microwave properties of low temperature sintered BST (Ba_{0.6}Sr_{0.4}TiO₃) thick-films and their applicability to co-firing processes

Institute for Applied Materials– Materials Process Technology(IAM-WPT)

<u>C. Kohler</u>, A. Friederich, D. Wang, M. Nikfalazar, M. Sazegar, R. Jakoby, J.R. Binder

10th Pacific Rim Conference on Ceramic and Glass Technology 2013, San Diego

Outline

Introduction

- Ba_{1-x}Sr_xTiO₃
- Microwave components

Low temperature sintered BST thick-films

- Experimental route
- Additive system
- Microstructure and phase content

Dielectric characterisation

- Co-Firing of MIM structures - CPW vs. MIM

Summary and Outlook

System Ba_{1-x}Sr_xTiO₃ (BST)

Institute for Applied Materials – Materials Process Technology (IAM-WPT)

$Ba_{0.6}Sr_{0.4}TiO_3$ as tuneable dielectric material

●Ba/Sr ●Ti ●O

Displacement of Ti⁴⁺-ion through an external electric field

- no power consumption
- high linearity
- fast tuning speed

Dielectric tunability

$$au_{arepsilon}(\mathsf{E}) = rac{arepsilon_{\mathsf{r}}(\mathsf{E}=\mathsf{0}) - arepsilon_{\mathsf{r}}(\mathsf{E})}{arepsilon_{\mathsf{r}}(\mathsf{E}=\mathsf{0})}$$

Microwave components based on BST thick-films

Microwave Engineering, Technical University Darmstadt

http://www.mwe.tu-darmstadt.de/de/fachgebiete/mikrowellentechnik/forschung/ferroelectrics/ferroelectrics.html

Motivation

Restriction: High sintering temperature of BST thick film (~1200°C)

- co-firing with silver/gold electrodes not possible (melting point of silver = 962°C)
- co-fired MIM devices only feasible by using high temperature fireable electrodes (e.g. Pt)
- not compatible with LTCC technology (firing range 865-900°C)

BST varactors

- <u>so far</u>: fabrication of electrodes after firing of BST thick-films via fotolithography
- coplanar varactors (IDC, CPW)

Objectives

- \rightarrow development of low-temperature sintered BST-thick films
- \rightarrow fabrication of co-fired MIM devices

Experimental route

Choice of additive system

Requirement additive system

- lowering of sintering temperature of BST
- no or limited formation of secondary phases
- low permittivity and dielectric loss

→ ZnO-B₂O₃ (molar ratio1:1) ($\epsilon_r = 6.9$, tan $\delta = 9.4 \times 10^{-3}$ (16 GHz), Surendran 2004)

→mixing with BST via co-milling

Samples

- 1.) **BST-5ZB** (5 vol.% ZnO-H₃BO₃)
- 2.) BST-10ZB (10 vol.% additive)
- 3.) BST-20ZB (20 vol.% additive)

Dilatometry

→ Reducing of sintering temperature

(further details: Kohler et al., IJAC 2013, doi: 10.1111/ijac.12116)

Microstructure & phase content of thick films

BST-20ZB (Porosity P = 34.8%)

BST-10ZB (P = 41.5%)

Higher additive amount

- \rightarrow lower grain sizes
- \rightarrow clustering of particles

→ no significant formation of (crystalline) secondary phases → shift of BST main (110) reflex ($Ba_{0.6}Sr_{0.4}TiO_3 \rightarrow Ba_{0.5}Sr_{0.5}TiO_3$)

TEM BST-10ZB

Distribution Titanium

Distribution Barium

→ dissolution of barium in amorphous phase

Dielectric characterization – CPW vs. MIM

- 2. Drying and firing (900°C/1h) of thick-films
- 3. Fotolithography of gold electrodes

Realized Structures

Concept Metal-Insulator-Metal (MIM) structure

Dielectric characterization - CPW

BST-10ZB

BST-20ZB

100 nm

 \rightarrow decrease of ε, tan δ, τ with increasing additive amount

Due to microstructure

- lower grain sizes
- clustering of particles
- higher content amorphous phase
- change in ratio of Ba:Sr

Fabricated MIM structures (co-fired at 865°C/1h)

+ good adhesion between layers
+ no reaction (proved by XRD, REM)
+ no infiltration of Ag in porous BST
+ dielectric characterization possible

- quality of silver electrodes (edges, roughness)
- cracks in BST-20ZB thick-film

Dielectric characterization – CPW vs. MIM (2GHz)

CPW vs. MIM

- → similar trends for permittivity and tunability
- → different for Q-values (due to loss of rough electrodes for MIM)
- → values of tunability for MIM lower than expected (printing quality has to be optimized)

13

Summary and Outlook

- material system BST-ZnO/B₂O₃
 - lowering of sintering temperature achieved
- low temperature sintered BST thick films
 - dependancy of additive amount on the microstructure and phase content
 - \rightarrow grain sizes
 - \rightarrow clustering of particles
 - \rightarrow content of amorphous phase
 - → Ba-Sr ratio
- Co-firing of MIM structures
 - good adhesion and compatibility of multilayers
- Outlook
 - optimizing printing quality \rightarrow fully printed RF component
 - usage of CuF-coped BST with ZnO/B $_2O_3$

CuF BST-5ZB (T = 45%, 80V, 2GHz)

Thank you for your kind attention!