

In-situ X-ray Absorption Spectroscopic Study of LiMn_{1.5}Ni_{0.4}Fe_{0.1}O₄ Spinel Cathode for Rechargeable Li-ion Batteries

J. Rana¹, S. Glatthaar², H. Gesswein², J. Binder², G. Schumacher¹, I. Zizak¹ and J. Banhart^{1,3}

¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany ²Karlsruhe Institute of Technology, Karlsruhe, Germany ³Technische Universität Berlin, Berlin, Germany

configuration

□ Chemical shifts : ambiguous, multiple dependencies

Need other means (i.e. bond lengths) to confirm the valence state of absorbing atoms

EXAFS fits at the Mn K-edge

3

0+

Mn-O3

5

3

R (Å)

2

Structural changes are reversible between 3.5 V - 5.0 V

EXAFS fits at the Mn K-edge

Deep discharge below 3.5 V gives rise to the formation of tetragonal phase Li₂M₂O₄
Tetragonal phase irreversible upon subsequent charge to 2.9 V

EXAFS fits at the Ni K-edge

ġ.

R (Å)

EXAFS fits at the Ni K-edge

□ Tetragonal phase observed at 2.0 V

Tetragonal transition irreversible upon subsequent charge to 2.9 V

Variation in the bond length

^{4&}lt;sup>th</sup> shell

Metal-ligand bond length

Variation in the Metal-ligand bond length

Pristine 4.7 V 5.0 V 4.7 V* 3.5 V 2.7 V

Discharge

Charge

2.0 V 2.9 V

Charge

0.004

0.002

0.000 ·

Distribution of the Metal-ligand bond length

Presence of Ni²⁺ and Ni³⁺ in the pristine state

- Oxidation of $Ni^{2+} \rightarrow Ni^{3+} \rightarrow Ni^{4+}$ during charge
- Reduction of $Ni^{4+} \rightarrow Ni^{3+} \rightarrow Ni^{2+}$ during discharge
- Two-step Ni²⁺/Ni⁴⁺ redox reaction
- Presence of Mn³⁺ in the pristine state and a small activity from Mn³⁺/Mn⁴⁺ redox couple
- □ Deep discharge below 3.5 V involves the reduction of $Mn^{4+} \rightarrow Mn^{3+}$

Electrochemical activity between 3.5 V - 5.0 V attributed to,

- Two-step Ni²⁺/Ni⁴⁺ and Fe³⁺/Fe⁴⁺ redox reactions
- Small contribution from Mn³⁺/Mn⁴⁺ redox couple

Structural changes are reversible between 3.5 V - 5.0 V

- Deep discharge below 3.5 V results in,
 - Irreversible transition to tetragonal phase of type Li₂M₂O₄ (~30 %)
 - Involves the reduction of $Mn^{4+} \rightarrow Mn^{3+}$ and that of $Fe^{3+} \rightarrow Fe^{2+}$
- Tetragonal distortion begins around Mn atoms and spreads throughout the material

Financial support from Europäischer Fonds für Regionale Entwicklung (EFRE) is greatfully acknowledged under Project BATMAT

Thank you !