

Evaluation of Cross-Sections for *n* and *p* Induced Reactions on W Producing Hazardous Radionuclides in the Energy Range up to 3 GeV

A.Yu. Konobeyev, U. Fischer, P.E.Pereslavtsev

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University · founded 1825

Objectives

- to perform cross-section evaluation for reactions on tungsten producing of hazardous radionuclides at intermediate and high energies
- to make a first step for the preparation of nuclear model codes and processing tools obtaining activation data file for tungsten isotopes at energies up to 3 GeV

p+W and n+W interactions

The main contributors to the hazard (D.Ene, Sweden)

No	nuclide	T _{1/2} (s)	H1(%)
1	W187	8.539E+04	17.63
2	Gd148	2.354E+09	14.14
3	Re186g	3.263E+05	12.04
4	Ta182g	9.887E+06	7.85
5	Hf172	5.900E+07	7.79
6	W-185g	6.489E+06	5.97
7	Re188	6.121E+04	5.16
8	Hf178m1	4.000E+00	4.68
9	Hf179m1	1.867E+01	2.66

Problems

- uncertainty of nuclear model predictions in GeV region
- yield of isomers
- yield of light and heavy clusters, Z > 2
- agreement with low and high energy simulations using different codes

examples: MCNPX calculations, available evaluated data

 experimental data for cumulative yields and natural tungsten

Evaluated data: JENDL-HE (up to 3 GeV)

isomers, calculations above 150 MeV

Codes: MCNPX models Weisskopf-Ewing

Intranuclear cascade model + Hauser-Feshbach model CASCADE (KIT,JINR) + TALYS

Simulation of light and heavy cluster emission

Expected improvement of accuracy CASCADE/ASF KIT, 2005 IAEA Intercomparison of spallation models , 2009

A.Stankovskiy (SCK CEN): CASCADEX: 2008

High energy model (MC) +evaporation model (deterministic): 2000, 2001 S.Yavshits, O.Grudzevich

Code implementation

Computing time due to Hauser-Feshbach and high energy of projectiles

i) basic calculations

ii) MC calculations for covariances

Combination of advanced and well justified approaches

- reduced uncertainty of modeling
- yields of nuclei in metastable states
- unified approach for whole energy range under consideration

Possible improvement

"hybrid" transition between PE model (TALYS) to INC (CASCADE) at 100-200 MeV

Alternative approaches

ALICE/ASH

comparison with TALYS for Z > 50 for (p,x) reaction up to 150 MeV

Hybrid Monte Carlo (HMS) – Hauser-Feshbach model (TALYS) JEFF Meeting December 2010

Independent origins of knowledge about considered reactions

Measured yields for p+W reactions

EXFOR: about 3700 (Z_R,A_R,E₀) points independent (,IND,SIG) cumulative (,CUM,SIG) undefined by EXFOR compilers or by authors Kelley, 2005 (74-W-0(P,X) ELEM/MASS,,SIG). C1225006 Statistical error only

O0768189, (74-W-0(P,X)73-TA-172, IND, SIG)

Disagreement between some measurements E.Porras (2000) and R.Michel (2002) (74-W-0(P,X)73-TA-182,CUM,SIG)

Duplications

R.Michel (2002) O1099053 and M.Miah (2002) O1100011

Incorrect compilation

Bonardi (2011) O1884 "W-0" is shown instead of W-186

Difference with common cross-sections evaluations

Cumulative yields

about 50 % of measurements

cumulative and/or individual data for precursors

Data for natural mixture of isotopes of W

about 68 % of measurements

Positive influence on the quality of final data

Steps of evaluation

Correction of model parameters

Calculations using different models

Covariance information

CASCADE (KIT): INC+EQ

Evaluation of uncertainties: MC method of D.L.Smith

Parameters: a, δ , a_0 , E_d , σ for n-n, n- π $p_0=\{p_{01},...,p_{0M}\}$, $\Delta p_0=\{\Delta p_{01},...,\Delta p_{0M}\}$

Covariance matrix after K histories

$$V_{i,j} = (1/K) \sum_{k=1,K}^{K} (\sigma_{ki} - \sigma_{0i}) (\sigma_{kj} - \sigma_{0j}) \quad \text{for } i,j=1,N \text{ (energy)}$$

The time of computation K x N_{MC} K : 10,000 – 100,000

Example

Correlation matrices for W(p,x)n and W(p,x)p cross-section

Nuclide	Average contribution to cumulative yield	
Gd148	21. %	
Tb148g	14. %	
Tb148m	14. %	
Dy148	26. %	
Ho148g	0.52 %	
Ho148m	0.52 %	
Ho148m2	0.52 %	
Ho152g	2.3 %	
Ho152m	2.01 %	
Er152	16. %	
Yb156	1.9 %	
Lu160	2.0 %	

W(p,x)¹⁴⁸Gd

W(p,x)¹⁴⁸Gd (cumulative)

JENDL-HE: Yield of Gd148 is twice underestimated

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Evaluated cross-section

W(p,x)^{186g}Re

W(p,x)^{182g}Ta

W(p,x)¹⁷²Hf

Conclusion

Cross-sections for reactions resulting to hazardous nuclides by the nucleon irradiation of tungsten were evaluated using advanced nuclear models and experimental data at energies up to 3 GeV

The first step is made to prepare the evaluation tools for high energy applications

