

Grenzschichtfernerkundung: Bestimmung der Mischungsschichthöhe und anderer Grenzschichtstrukturen aus SODAR, RASS und Ceilometer

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Karlsruher Institut für Technologie		Aufsichtsrat									
		Geschäftsstelle Aufsichtsrat)	1	Dr. Andreas Kreim	eyer (stelly. Vorsit:	z)					
	Se	enat	Präsidium			Chancengleichhei beauftragte	Personalra	at Schwerbehinderten- vertretung	Fachkräfte für Arbeitssicherheit	Beauftragte für Compliance	
Präsidium	Präsident Prof. Dr. Eberhard Umbach	VP Lehre und akademische Angelegenheiten N. N.	VP Forschung und Information Prof. Dr. Detlef Löhe		orschung und Innovation Dr. Peter Fritz		VP Wirtschaft und Finan Dr. Ulrich Breuer	zen VP Per Dr. Elke	VP Personal u. Recht Dr. Elke Luise Barnstedt		
Chief Officers		CHEO Prof. Dr. Alexander Wanner	CSO 1 Prof. Dr. D. Wedlich	CSO 2 Prof. Dr. V. Saile	CSO 3/CIO Prof. Dr. W. Juling	CSO 4 Dr. J. Knebel	CSO 5 Dr. KF. Zlegahn	CSO 6 N.N.	CO-TI Dr. G. Schmidt		
Fakultäten/ Disziplinen		Alle Fakultäten bezüglich Lehre	Chemie und Blowissenschaften	Maschinenbau	Mathematik	Elektrotechnik und Informationstechnik	Architektur	Wirtschafts- wissenschaften			
			Chemieingenieur- wesen und Verfahrenstechnik	Physik	Informatik		Bauingenieur-, Geo- und Umwelt- wissenschaften	Geistes- und Sozial- wissenschaften			
Zentren/ Schwerpunkte			KCETA	NanoMikro	COMMputation	Mobilitätssysteme	Energie	Klima und Umwelt			
				Optics and Photonics	Anthropomatik und Robotik			Mensch und Technik			
				ANKA							
				HIU ^{b)}							
Programme			A STRO	NANOMIKRO	SuCo	FUSION	EE	ATMO			
			BIF	ANKA		NUKLEAR	REUN	TIG			
Institute ¹⁾			IBG	MAI	IAI	IHM	IKFT	IMK-ASF			
			FG	IFP	IPE	IKET	IMVT	IMK-IFU			
			KP	IMT		INE	пс	IMK-AAF			
1) minute her sector h			ΠG	INT		INR		IMK-TRO			
zugeordnet				IPS	SCCo			ITAS			
Dienst- leistungs- einheiten		SLEN HOCH	LEM	ANKA COS	ARCHIV				TID-BPM EVN	RECHT	BEA
	PST	ZAK ^{aj} Redtenbacher-Kolleg			BIB				TID-DGT FIM	<u>. </u>	FTU
	PKM				SZS				TID-TGAM PTKA	a	PEW
	INTL			gb) F1	yrch)	-	u 0 04	60 ⁴	KSM REV		PSE
a) Zuordnung zu VP Dr. E. B	Barnstedt b) Direkt Vizepräsident Pro	f. Dr. D. Löhe zugeordnet c) institut mit Die	nstleistungsaufgaben	d) keine fachliche	Weisung durch KIT-Prä	sidium e) Direkt Vi	zepräsident Dr. P. Fritz z	rugeordnet f) Zuoro	dnung zu CHEO Prof. Dr. A. Wanner		

October 2012

IMK-IFU Personnel

- people with diverse training backgrounds and specializations
- supported by POF funding (~1/3) and externally funded research (~2/3)

Remote sensing

of the vertical structure of the atmospheric boundary layer

Basic remote sensing techniques

name	princple	spatial resolution	direction	type	
RADAR	backscatter, electro-magnetic pulses, fixed wave length	profiling	scanning, slanted	active, monostatic	
SODAR	backscatter, acoustic pulses, fixed wave length	profiling	fixed, slanted, vertical	active, usually monostatic	
LIDAR ceilometer	backscatter, optical pulses, fixed wave length(s)	profiling	scanning, fixed, horizontal, slanted, vertical	active, monostatic	
RASS	backscatter, acoustic, electro-magnetic, fixed wave length	profiling	fixed, vertical	active, monostatic	
	absorption, infrared, spectrum	path-averaging	fixed, horizontal, slanted	active, bistatic or passive	
FTIR	emission, infrared, spectrum	path-averaging	fixed, horizontal, slanted	passive	
DOAS	absorption, optical, fixed wave lengths	path-averaging	fixed, horizontal	active, bistatic	
radiometry	diometry electro-magnetic, fixed wave length(s) averaging, profiling		fixed, scanning, slanted, vertical	passive	
tomography	travel time, acoustic, fixed wave length	horizontal distribution	fixed, horizontal	active, multiple emitters and receivers	

Frequencies for atmospheric remote sensing

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

Surface-based Remote Sensing Systems

at IMK-IFU

SODAR (Large system),

WINDFORS Wind Energy Research Allianc

acoustic backscatter, Doppler shift analysis → wind, turbulence

SODAR-RASS (Doppler-RASS), acoustic, electro-magnetic backscatter, determines speed of sound → wind and temperature profiles

Ceilometer, backscatter, optical pulses, wave length ~ 0.9 µm → aerosol profiles

Wind-LIDAR, optical backscatter, Doppler shift analysis, wave length ~ 1.5 μ m \rightarrow wind and

aerosol profiles

image: Halo Photonics

SODAR

algorithms for the determination of mixing-layer height

and low-level jet observations

9 20.06.2013 Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

monostatic SODAR: measuring principles

deduction:

- sound travel time backscatter intensity Doppler-shift
- = height
- = turbulence
- = wind speed

Emission of sound waves into three directions:

in order to measure all three components of the wind (horizontal and vertical)

SODAR sample plot (daytime convective BL)

SODAR sample plot (lifted inversion)

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Algorithms to detect MLH from SODAR data

Eine unserer ersten großen SODAR-Messkampagnen

	1 2002	1 2003
	2 2002	2 2003
	3 2002	3 2003
	4 2002	4 2003
5 2001	5 2002	
6 2001		
7 2001		
8 2001	8 2002	
9 2001	9 2002	AFO 2000
0 2001	10 2002	GEFÖRDERT VOM
1 2001	11 2002	Bundesministerium
2 2001	12 2002	für Bildung und Forschung

2-jährige Messperiode an ein und demselben Standort, davon 17 Monate mit demselben Messprogramm

Versuch einer analytischen Beschreibung des vertikalen Windprofils

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Ansätze für durchgehende Windprofilbeschreibung in der nicht neutral-geschichteten Grenzschicht (Emeis et al. 2007 basierend auf Etling 2002) mit der zusätzlichen Annahme, dass auch die vertikale Windscherung in der Höhe $z = z_p$ stetig ist:

$$u(z) = \begin{cases} u_* / \kappa (\ln(z/z_0) - \Psi_m(z/L_*)) & \text{for } z < z_p \\ u_g(-\sin\alpha_0 + \cos\alpha_0) & \text{for } z = z_p \\ u_g[1 - 2\sqrt{2}e^{-\gamma(z-z_p)} \\ \sin\alpha_0 \cos(\gamma(z-z_p) + \pi/4 - \alpha_0) & \text{for } z > z_p \\ + 2e^{-2\gamma(z-z_p)} \sin^2\alpha_0]^{1/2} \end{cases}$$

mit den externen Parametern z_0 , L_* und u_g und den internen Parametern α_0 , z_p und γ .

mit den externen Parametern z_0 und u_g und den internen Parametern α_0 , z_p und γ .

$$u_* = 2 |u_g| \gamma \kappa z_p \sin \alpha_0$$

$$\alpha_0 = \operatorname{arctg} \frac{1}{1 + 2\gamma z_p \ln(z_p / z_0)}$$

$$\gamma = \sqrt{\frac{f}{2\kappa u_* z_p}}$$

die gestrichelte Kurve zeigt die durchgehende Profilfunktion, die durchgezogene Kurve ein nach oben fortgesetztes logarithmisches Profil

Mittlerer Tagesgang (Monatsmittel) der Inversionshöhe über Hannover

1920.06.2013Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Low-level jet

Ceilometer

algorithms for the determination of mixing-layer height

Ceilometer/LIDAR measuring principle

detection:

travel time of signal backscatter intensity Doppler-shift

- = height
- = particle size and number distribution
- = cannot be analyzed from ceilometer data

(available only from a Wind-LIDAR: velocity component in line of sight)

cenometer sample plot (daytime convective BL)

optical backscatter intensity

WINDFORS

negative vertical gradient of of connology optical backscatter intensity

Algorithm to detect MLH from Ceilometer-Daten

criterion

WINDFORS Wind Energy

minimal vertical gradient of backscatter intensity (the most negative gradient)

Different gradient methods (see Sicard et al. 2006, BLM 119, 135-157)

comparison of two different ceilometers

LD40

two optical axes wave length: 855 nm height resolution: 7.5 m max. range: 13000 m

CL31 / CL51

one optical axis wave length: 905 nm height resolution: 5 m max. range: 7500 m

comparison of LD40 and CL31

Eyjafjallajökull ash cloud over Southern Germany

read more: Emeis, S., R. Forkel, W. Junkermann, K. Schäfer, H. Flentje, S. Gilge, W. Fricke, M. Wiegner, V. Freudenthaler, S. Groß, L. Ries, F. Meinhardt, W. Birmili, C. Münkel, F. Obleitner, P. Suppan, 2011: Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region. Atmos. Chem. Phys., 11, 2689–2701

30 10.06.2013 Prof. Dr. Stefan Emeis - Mixing-layer height by remote sensing stefan.emeis@kit.edu Institute for Meteorology and Climate Research – Atmospheric Environmental Research

31

RASS

principles of operation

examples

RASS measuring principle

detection:

travel time of em./ac. signal ac. backscatter intensity ac. Doppler-shift em. Doppler shift

- = height
- = turbulence
- = line-of-sight wind speed
- = sound speed → temperature

(identical to SODAR) (identical to SODAR)

RASS: frequencies

Bragg condition: acoustic wavelength = $\frac{1}{2}$ electro-magnetic wavelength

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences - In situ and remote. Borntraeger, Stuttgart, 272 pp., 103 figs, 28 tables, ISBN 978-3-443-01066-9.

SODAR-RASS (Doppler-RASS)

(METEK)

acoustic frequ.: 1077 Hz radio frequ.: 474 MHz resolution: 20 m lowest range gate: ca. 40 m

vertical range: 540 m

example RASS data: summer day potential temperature (left), horizontal wind (right)

example RASS data: winter day potential temperature (left), horizontal wind (right)

Doppler windlidar

wind, turbulence, aerosol detection, mixing-layer height, low-level jet

Doppler windlidar measuring principle

detection:

travel time of signal backscatter intensity depolarisation Doppler-shift

- = height
- = particle size and number distribution

= particle shape

= wind speed in the line of sight

mobile Doppler windlidar from Halo Photonics

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Comparisons between different instruments

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

VINDFORS Wind Energy Research Alliance temperature profile and aerosol backscatter

comparison of RASS data (potential temperature, right) with aerosol backscatter from a ceilometer (left)

CL31 Augsburg AVA log $_{10}$ of backscatter with MLH on 01.03.2009 in 10⁻⁹ m⁻¹ sr⁻¹

Detection of the diurnal variation of PBL structure from SODAR and Ceilometer data taken in Budapest

Emeis, S., K. Schäfer, 2006: Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound.-Lay Meteorol., 121, 377-385,

Comparison of MLH retrievals with three different remote sensing techniques

Emeis, S., Chr. Münkel, S. Vogt, W.J. Müller, K. Schäfer, 2004: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos. Environ., 38, 273-286.

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Application of MLH information for regional emission flux estimates

Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Determination of regional surface emission fluxes of a substance e

Assumptions:

- horizontal homogeneity
- no fluxes through the upper boundary (inversion)
- no sources and sinks within the volume of interest

$$\int_{S_{surf}} \overline{e'w'} \cdot dS = \int_{V} \frac{de}{dt} dV$$

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

simultaneous measurement of concentration and MLH

(inverse method)

determination of regional [C_{CH4} w]_{surf} (curves) from concentration changes (x-axis) and MLH (y-axis)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

determination of regional [C_{CH4} w]_{surf} (curves) from concentration changes and remotely sensed MLH

methane emissions:

typical values obtained here: span: mean value:

0.10 to 2.00 $\mu g/(m^2\,s)$ 0.50 $\mu g/(m^2\,s)$

average values from national reporting (Kyoto protocol): for entire Germany: 0.20 µg/(m² s) among this from agriculture: 0.13 µg/(m² s)

Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Summary

51 20.06.2013 Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

○ ○ ○ ● RASS delivers temperature profiles, wind profiles are additionally available.
MLH directly from temperature profiles. LLJ from wind profiles.
<u>Does not work properly</u> under high wind speeds. Restricted range.

○ ○ ● ◆ wind lidar detects wind profiles, aerosol distribution and water droplets.
It has to be assumed that the aerosol follows the thermal structure of the atmosphere and the wind.

MLH from aerosol backscatter, wind speed variance, LLJ from wind profiles. <u>Does not work properly</u> in extreme clear (aerosol-free) air and during precipitation events and fog.

○ ● ▲ Ceilometer detects aerosol distribution and water droplets. It has to be assumed that the aerosol follows the thermal structure of the atmosphere.
MLH indirectly from aerosol backscatter using a MLH algorithm.
Does not work properly in extreme clear (aerosol-free) air and during precipitation

events and fog.

⊙ ♣ ♣ ♣ SODAR detects wind profiles, temperature fluctuations and gradients, but no absolute temperature.

MLH indirectly from acoustic backscatter (MLH algorithm). LLJ from wind profiles. <u>Does not work properly</u> under perfectly neutral stratification, with very high wind speeds, and during stronger precipitation events. Restricted range.

Literature

Prof. Dr. Stefan Emeis | Grenzschichtfernerkundung

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Asimakopoulos, D.N., C.G. Helmis, J. Michopoulos, 2004: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. - Meteor. Atmos. Phys. 85, 85–92.

Beyrich, F., 1997: Mixing height estimation from sodar data – a critical discussion. - Atmos. Environ. 31, 3941–3953.

Ceilometer:

Schäfer, K., S.M. Emeis, A. Rauch, C. Münkel, S. Vogt, 2004: Determination of mixing-layer heights from ceilometer data. In: Remote Sensing of Clouds and the Atmosphere IX. Schäfer, K., A. Comeron, M. Carleer, R.H. Picard, N. Sifakis (Eds.), Proc. SPIE, Bellingham, WA, USA, Vol. 5571, 248–259.

Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, D. García-Vizcaino, 2006: Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations. - Bound.-Lay. Meteor. 119, 135–157.

RASS:

Engelbart, D.A.M., J. Bange, 2002: Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS in the frame of the LITFASS project. Theor. Appl. Climatol. 73, 53–65.

Emeis, S., K. Schäfer, C. Münkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol. Z., 18, 149-154. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2009/0365)

Emeis, S., K. Schäfer, C. Münkel, R. Friedl, P. Suppan, 2011: Evaluation of the interpretation of ceilometer data with RASS and radiosonde data. Bound.-Lay. Meteorol., online April 5, 2011. DOI: <u>10.1007/s10546-011-9604-6</u>

Windlidar:

Emeis, S., M. Harris, R.M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. - Meteorol. Z., 16, 337-347.

Reginal budget studies:

Emeis, S., 2008: Examples for the determination of turbulent (sub-synoptic) fluxes with inverse methods. Meteorol. Z., 17, 3-11. DOI: 10.1127/0941-2948/2008/0265

Reviews:

Emeis, S., K. Schäfer, C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height – a review. -Meteorol. Z., 17, 621-630. (Open access, freely available from http://dx.doi.org/10.1127/0941-2948/2008/0312)

Books:

wind energy meteorology:

Emeis, S., 2012: Wind Energy meteorology. Series: Green Energy and Technology. Springer Heidelberg etc., XIV+196 pp. H/C. ISBN: 978-3-642-30522-1, DOI: 10.1007/978-3-642-30523-8

boundary-layer remote sensing with application examples:

Emeis, S., 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Series: Atmospheric and Oceanographic Sciences Library, Vol. 40. Springer Heidelberg etc., X+174 pp. 114 illus., 57 in color., H/C. ISBN: 978-90-481-9339-4, DOI: 10.1007/978-90-481-9340-0

overview on the entire range of meteorological measurement methods:

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences. In situ and remote. Series: Quantifying the Environment Vol. 1. Borntraeger Stuttgart. XIV+257 pp., 103 Figs, 28 Tab. ISBN 978-3-443-01066-9.

Thank you very much for your attention

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

IMK-IFU Atmosphärische Umweltforschung Garmisch-Partenkirchen

ifu.kit.edu