

Tritium breeder materials

M.H.H. Kolb

INSTITUTE FOR APPLIED MATERIALS - MATERIAL PROCESS TECHNOLOGY

www.kit.edu

D-T Fusion Power Plants

Properties of lithium

- Melting point: ~180 °C
- Readily reacts with:
 - Oxygen
 - Nitrogen
 - Hydrogen
 - Carbon dioxide
 - Water
 - **.**..

How can lithium be put into the blanket?

EU He cooled pebble bed TBM

Institute for Applied Materials (IAM-WPT)

Lithium in fusion blankets

Plasma:
$${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n + 17.6 \text{ MeV}$$

Blanket: ${}^{6}Li + n \rightarrow {}^{4}He + {}^{3}H + 4.8 \text{ MeV}$

tritium self-sufficiency

Surrounding lithium with other atoms

- Liquid system
 - Lithium is still quite mobile and reactive
 - Possible magnetohydrodynamic effects
 - Examples:
 - Lithium-Lead
 - Lithium-Beryllium-Fluorine (FLiBe)
- Solid system
 - Reactivity can be reduced to a minimum
 - Ceramic or intermetallic compounds
 - "Low" complexity

Possible elements for lithium compounds

1 1 H	IUPAC Periodic Table of the Elements														18 2 He		
[1.007; 1.009]	2		Key:									13	14	15	16	17	4.003
	4		atomic num	ber								5	6	7	8	9	10
Li	Be		Symb	ol								В	С	Ν	0	F	Ne
	beryllium 9.012		name standard atomic v	weight								boron [10.80; 10.83]	carbon [12.00; 12.02]	nitrogen [14.00; 14.01]	oxygen [15.99; 16.00]	fluorine 19.00	neon 20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus 30.97	sulfur (32.05: 32.08)	chlorine [35.44: 35.46]	argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.10 37	40.08	44.96 39	47.87	50.94 41	42	43	44	45	58.69 46	47	65.38(2) 48	49	50	74.92 51	78.96(3)	^{79.90}	83.80 54
Rb	Sr	Y	7r	Nb	Mo	Тс	Ru	Rh	Pd	Aα	Сd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.47	87.62	88.91	91.22	92.91	95.96(2) 74	75	101.1	102.9	106.4	107.9	112.4	114.8 91	118.7	121.8	127.6	126.9	131.3
Ce.	Ba	57-71	HF	Ta	Ŵ	Po	0e	Ir	Dt	Διι	Ha	TI	Dh	Bi	Po	Δ+	- Bn
caesium	barium	lanthanoids	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3	00.400	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	[204.3; 204.4]	207.2	209.0	110		
87 E 2	Be	89-103	104 Df	105 Db	106 Sa	107 Dh	108	109 R/14	110 Do	111 D a	112 Cm		114		116		
francium	radium	actinoids	rutherfordium	dubnium	seaborgium	bohrium	ns hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		LV livermorium		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	I D terbium	Dy	Ho	Er	Im	Yb	Lu	
		138.9	140.1	140.9	144.2	prometrialiti	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	

Lithium compounds as solid breeders

• **beryllium** pebbles

Requirements for solid breeders

- Operability
 - Produce enough tritium (TBR \geq 1.1)
- Reliability
 - Neutron irradiation
 - High temperatures within the blanket
 - Mechanical stress
- Safety
 - Compatibility with structural material
- Cost-efficiency
 - Fabrication & Recycling

High Li-density & low T-trapping

High melting point and/or thermal conductivity Reasonable resilience

Little interdiffusion

As easy as possible

Lithium compounds as solid breeders

Reference class solid breeder materials

 \blacksquare Li₄SiO₄

Li₂TiO₃

Well investigated solid breeder materials

- Li₂O Very high lithium density
- LiAlO₂ Excellent mechanical strength
- \blacksquare Li₂ZrO₃ Tritium retention
- \blacksquare Li₂SiO₃ Good properties in general

Swelling, sintering & creep Activation & lithium density Lithium density Lithium density

Potential solid breeder materials

- Li₈PbO₆ To be determined
- $Li_2Be_2O_3$ To be determined
- Li₂₂Si₅ To be determined

To be determined To be determined To be determined

[2-4] Hoshino et al.; Palermo et al.; Knitter et al.

Solid breeder concepts for ITER

Contents

- Fabrication techniques for solid breeder pebbles
 - Suropean Union
 - メ Japan
 - メ Korea
- Mechanical and thermal properties of solid breeder pebbles & pebble beds
 - Weibull distribution
 - DEM modeling
 - Pebble bed experiments
- Neutron irradiation of breeder materials
 - Markov Thermo-mechanics
 - Tritium release

Pebble fabrication by melt-spraying

- Pre-industrial scale at Schott AG, Mainz
- Batch process, 1.5 kg/batch
- Yearly capacity: 300 kg
- Slightly substoichiometric
 - 2.5 wt.% excess of silica
 - 2-phase material

M. Kolb

September 6th

9

Fabrication of Li₄SiO₄ pebbles

10 September 6th M. Kolb 2013

Pebble fabrication by melt-spraying

Pebble fabrication by slurry dropping

Morean reference fabrication process for lithium orthosilicate

- Laboratory-scale
- Continuous fabrication possible?
- Yearly capacity: 250 kg
- Stoichiometric Li₄SiO₄ is aimed for
 - Single" phase material
 - Minor impurities of a glassy phase

a.

Pebble fabrication by extrusion & spheronization

EU reference fabrication process for lithium metatitanate

- Pre-industrial scale at CTI
- Continuous fabrication possible
- Yearly capacity: 150 kg
- Slightly substoichiometric
 - Li/Ti-fraction: 1.9
 - Single phase material

Pebble fabrication by a sol-gel method

Japanese reference fabrication process for lithium metatitanate

- Laboratory scale at JAEA
- Continuous fabrication possible
- Yearly capacity: 100 kg
- Slightly hyperstoichiometric
 - Li/Ti-fraction typically 2.15
 - Single phase material

et al.; Hoshino et al.

5,10] Knitter

Fabrication of Li₂TiO₃ pebbles

 15
 September 6th
 M. Kolb
 Fusion Summer School – Tritium breeder materials

Fabrication of Li₂TiO₃ pebbles

▲ Large homogeneity range of Li₂TiO₃

- Li⁺ and Ti⁴⁺ are of similar size
- Part of the Li⁺ ions occupy the same Wykoff positions as Ti⁴⁺ or as in y-Li₂TiO₃ the same lattice site

■ 4Li+ 🛁 Ti⁴⁺

Karlsruhe Institute of Technology

Solid breeders in comparison

ITER partner	China *:	EU	India ®	Japan	Korea
Material	Li_4SiO_4	Li_4SiO_4	Li ₂ TiO ₃	Li ₂ TiO ₃	Li_4SiO_4
Stoichiometry	sub	sub	exact	hyper	exact
Pebble size / mm	0.80 – 1.00	0.25 – 0.63	1.00 – 1.25	1.18	0.90 – 1.10
Pebble density / %	94	95	90	89	77
Open porosity / % Closed porosity / %	<4 <1.5	<1 <5	6-9 2-5	n.a.	11 12
Pebble bed density / %	60.5	61.0	60.0	64.0	48.0
Max. pebble bed temperature / °C	900	930	900	900	900
Crushload / N	7.0	7.0 ± 1.5	n.a.	n.a.	15 – 35

Mechanical characterization

- Weibull distribution
 - Life distribution model:
 - Cumulative hazard function:
 - (Non-constant) failure rate:
 - Cum. distribution function of failure:
 - **α**: Characteristic Life, γ: Shape factor

Mechanical characterization

- Describing the failure of brittle materials
 - Cum. distribution function of failure (function of stored elastic energy W_c):

$$F(W_c) = 1 - e^{-\left(\frac{W_c}{W_{Mat}}\right)^m} \longrightarrow F(W_c) = 1 - e^{-(12116W_c)^{3.17}}$$

- Many experimental limitations can be overcome
 - Defect orientation, effect of plate materials, high stress gradients
- Works well in complicated stress states
- Offers the possibility to model pebble beds (discrete element method, DEM)

Damage criterion: $D\left(\frac{W}{W_c}\right) = \exp\left(-\exp\left(-a\left(\frac{W}{W_c} - b\right)\right)\right)$

• Lowering of Young's modulus $E = (1 - D)E_0$

Describing the failure of brittle pebbles in pebble beds

- Fragments are not taken into account
- No localization of damage

0 0.25 0.5 0.75 1

D:

DEM modeling of pebble beds

Pebble bed response

- Saturation at critical stress followed by creep-like behavior
 - Continuous failing of pebbles
- More gradual damage evolution leads to lower critical stress
- Significantly lower residual stress for more gradual damage evolution
- Critical stress does not depend on the density of the pebble bed packing

[18] Annabattula et al.

DEM modeling of pebble beds

Damage analysis of pebble beds

- Total number of "completely" damaged pebbles (D = 1) is independent of the damage evolution
- At about 0.2% of "completely" failed pebbles, the critical stress is reached
- Gradual damage evolution of the pebbles leads to a significantly higher number of "partly" damaged pebbles

[18] Annabattula et al.

Characterization of pebble beds

III

 $\sigma_1 < \sigma_2 < \sigma_3$

 σ_3

 $\frac{\sigma_2}{\sigma_1}$

Π

Market Sciences Sciences

- Negligible below 600 °C (Li₄SiO₄)
- Power law description: $\varepsilon_c = Ae^{\left(-\frac{B}{T}\right)}\sigma^n t^m$
 - Relations to the behavior of individual pebbles can be drawn
 - Temperature, stress and time dependence

Parameters are only valid for one grade

Characterization of pebble beds

Thermo-mechanical behavior

- Thermal conductivity increases with strain and temperature
 - Consolidation of the pebble bed with increasing strain
 - Increased contact area between the pebbles
 - Elastic leveling of the pebble caps
 - Considerable creep at elevated temperatures

Gas atmosphere has a major effect on the thermal conductivity

[20] Reimann et al.

Neutron irradiation of breeder materials

- Mathematics of pebble beds during irradiation
 - DEMO (2000) relevant power densities: 20-26 W/cm³

Neutron irradiation of breeder materials

- Tritium release experiments
 - Residence time: $\tau = \frac{V}{q}$; V: Capacity of the system; q: Flow through the system
 - Tritium inventory of a pebble: $I = \int_{V_{pebble}} \dot{m}(r) \times \tau(T(r)) dV$
 - In-pile experiments show steady-state release: G = R
 - Temperature programmed desorption (TPD) for out-of-pile experiments

Karlsruhe Institute of Technology

Summary

Fabrication of solid breeder pebbles

- Lithium orthosilicate and lithium metatitanate are the reference class solid breeder materials
- The ITER partners use different approaches to fabricate breeder pebbles
- Reprocessing depends on the fabrication process

Modeling of pebble beds

- DEM models are an important tool to study pebble beds in detail
- Pebble beds withstand 0.2 % of failed pebbles until they show creep-like behavior

Neutron irradiation

- Tritium residence time is an important design value
- Out-of-pile and in-pile experiments deliver complementary results

Thank you for listening

INSTITUTE FOR APPLIED MATERIALS - MATERIAL PROCESS TECHNOLOGY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

References

- [1] Cismondi et al. (2009) Fusion Engineering and Design 84 (2-6), pp. 607-612
- ▲ [2] Hoshino et al. (2013) Fusion Engineering and Design, http://dx.doi.org/10.1016/j.fusengdes.2013.05.013
- ▲ [3] Palermo et al. (2012) Fusion Engineering and Design 87 (2), pp. 195-199
- M [4] Knitter et al. (2012) Journal of Nuclear Materials 420 (1-3) , pp. 268-272
- ▲ [5] Knitter et al. (2013) Journal of Nuclear Materials, http://dx.doi.org/10.1016/j.jnucmat.2013.02.060
- ▲ [6] Pannhorst et al. (1998), Proc. 20th SOFT, CEA, pp. 1441–1444
- M [7] Kolb et al. (2011) Fusion Engineering and Design 86 (9-11), pp. 2148-2151
- ▲ [8] Claus et al. (1996) Journal of Nuclear Materials 230 (1), pp. 8-11
- [9] Lulewicz et al. (2002) Journal of Nuclear Materials 307-311 (1 SUPPL.), pp. 803-806
- ▲ [10] Hoshino et al. (2012) Fusion Engineering and Design 87 (5-6), pp. 486-492
- ▲ [11] Mergos et al. (2009) Materials Characterization 60 (8), pp. 848-857

References

- ▲ [12] West (1981) Journal of Materials Science 16 (7), pp. 2023-2025
- ▲ [13] Hoshino et al. (2009) Journal of Nuclear Materials 386-388 (C), pp. 1107-1110
- ▲ [14] Feng et al. (2012) Fusion Engineering and Design 87 (5-6), pp. 753-756
- ▲ [15] Knitter et al. (2007) Journal of Nuclear Materials 361 (1), pp. 104-111
- ▲ [16] Park et al. (2011) Presentation at CBBI-16, Portland, Oregon http://www.fusion.ucla.edu/cbbi/cbbi16/
- ▲ [17] Zhao (2010) PhD thesis, Karlsruhe Institute of Technology, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000021237
- [18] Annabattula et al. (2011) Presentation at CBBI-16, Portland, Oregon http://www.fusion.ucla.edu/cbbi/cbbi16/
- ▲ [19] Reimann et al. (2001) Fusion Engineering and Design 58-59, pp. 647-651
- ▲ [20] Reimann et al. (2002) Fusion Engineering and Design 61-62, pp. 345-351
- ▲ [21] van Til et al. (2012) Fusion Engineering and Design 87 (5-6), pp. 885-889
- ▲ [22] Munakata et al. (2009) Journal of Nuclear Materials 386-388 (C), pp. 1091-1094
- [23] Peeters et al. (2007) Fusion Engineering and Design 82 (15-24), pp. 2318-2325