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Lead-cooled Nuclear Reactors/Systems 
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Lead-Cooled Fast Reactor 
 One of the concepts for the 4th generation of nuclear power 

plants (Gen IV) 
 In the long-term, Pb as primary coolant at maximum ca. 800°C 
 Short- to mid-term: Pb- or LBE-cooled at  450 – 550°C 

Accelerator Driven (Subcritical) System 
 Transmutation of long-lived radioactive isotopes in nuclear 

waste 
 Power generation 
 Liquid lead (Pb) or lead-bismuth eutectic (LBE) as spallation 

 target and primary coolant 
 Maximum temperature, typically 

 450 – 500°C for regular operation 

 Periodically 550°C (according to plant design) 
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Impact of oxygen addition to Pb alloys on steel 
corrosion  

Seminar on Development of Oxygen Sensors for HLMs, October 14, 2013, Indira Gandhi Centre for Atomic Research                  Jürgen Konys 

 Stimulation of the oxidation of steel 
constituents 
 Formation of an oxide scale on the  

steel surface 
 Spatial separation of the steel from  

liquid metal  
 Reduced dissolution rate or risk of 

embrittlement 
 

 Steel constituents must be less noble than  
the constituents of the liquid metal 
 Applicable to Pb, lead-bismuth 
 Not applicable to lead-lithium (Pb17Li)  

or Na 
 

 However, thick oxide scales impair heat-
transfer across the steel surface 
 Practical limit of oxygen addition 

 

 Relevant to 
 Lead-cooled fast reactor (LFR) 
 Accelerator driven system  

("Actinide Burner") 
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Example: 
T91/LBE/550°C 



Components of an oxygen control system 

Sensors for on-line monitoring 

Electrochemical oxygen monitoring 
 Solid electrolyte on the basis of 

yttria-stabilized zirconia (YSZ) 
 Metal/metal-oxide or Pt/gas 

reference electrode 

Issues to be addressed (in general) 
 Compatibility with the use in Pb 

alloys (YSZ/steel joint) 
 Accuracy 
 Long-term reliability 

Licensing for nuclear application 
 Structural stability of the YSZ 

product used 
 Risk of contamination in case of 

electrolyte cracking 

Oxygen-transfer device(s) 

“Classic“ mass transfer across the 
interface between oxygen source/sink 
and the liquid metal 

Type Oxygen 
source 

Oxygen 
sink 

Solid-
liquid 

PbO (less noble 
metals) 

Gas-liquid Ar, H2O, air Ar-H2 

Long-term experience from operating 
experimental facilities for testing 
materials (steels) in oxygen-containing 
Pb alloys exists 
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Electrochemical oxygen sensors for liquid  
lead alloys 
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Basic components Sensor output 
 Solid electrolyte 
 Yttria stabilized zirconia (YSZ) 
 Tubes with 4.5–4.8 mole% Y2O3 
 "Thimble" with 3 mole% Y2O3 

 Voltmeter reading, E 
 Measure of the chemical potential 

of oxygen in the liquid metal 
 May in general depend on the 

specific combination of the sensor 
with a high-impedance voltmeter 

 Reference electrode 
 Metal/metal-oxide like Bi/Bi2O3 and 

In/In2O3 with Mo wire as electric 
lead 

 Pt/air using steel wire with 
platinised tip as electric lead 

 Ideal sensor/voltmeter system 
 Ideal zero-current potential: 

 

 Second (working) electrode 
 The liquid Pb alloy 
 Auxiliary wire or the steel housing 

of the sensor serves as part of the 
electric lead   

 Calculated oxygen concentration, cO: 
 
 
 

 C1 and C2 are constants specific for 
the reference electrode 



Oxygen sensors developed at KIT 
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 Long electrolyte tube (Ø 6×255 mm) 
 Polymer sealing ring in sufficient 

distance from the liquid metal 
 Cooling fins for reducing the thermal 

load on the sealing ring 
 Steel sheath for protecting the 

electrolyte from shear forces, 
serving as electric lead on the 
liquid-metal side 

 Reference electrodes 
 (Steel)Pt/air 
 (Mo)Bi/Bi2O3  

 
 

 

Electrolyte: commercial   
4.8-YSZ with Al2O3 addition 

Uth : 
~3 mV at 300°C  
~11 mV at 700°C (Mo/stainless steel) 



Testing of the sensor accuracy 

Adjusting known oxygen potentials in LBE 

Pb/PbO (oxygen saturation) 
Co/CoO 
Fe/Fe-oxide equilibria 
Fe and Co added in the form of powder 
Stabilization of these potentials using gases 
with varying oxygen partial pressure 
Ar 
Ar + air 
Ar + H2 
Temperature range: 350–700°C 
Digital multimeter with high impedance >1GW 

Sensors were tested without metallic sheath 
(Mo electrode as auxiliary electric lead), so as 
to minimize unintentional contamination of 
the LBE with metals.  
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Aspects of sensor accuracy 
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Systematic errors 
 
 
 

 Non-ideal performance of the electrolyte 
 Electron conductivity reduces E* by a factor 

(1 – te) with te < 1 
 te < 10-4 for 8-YSZ and 10-YSZ (at < 800°C) 
 Thermoelectric voltage, Uth 
 Resulting from the use of different 

materials for the electric leads of reference 
and working electrode 
 Uth = 4–11 mV at 350–700°C for 

Mo(+)/austenitic steel(–) 
 Ratio of the electric resistance of the 

electrolyte (RE) and the internal resistance of 
the voltmeter (RV) 
 RV > 1 GW generally sufficient for accurate 

measurements in liquid metals 

Required accuracy 

 From experience: 
 Fluctuations of cO by half an order of 

magnitude may significantly influence 
the oxidation mechanism of F/M steels 
 – 57 mV < ∆absE* < +25 mV (at 550°C) 

 Estimation of allowable DabsE*: 
  ± 25 mV at 550°C for reliable detection 

of such fluctuations 
 Allowable DabsE* decreases with 

decreasing temperature 
 ± 5 mV required for ± 10% error of cO 



 Pt wire fixed with Pt paste 
 Allows for producing different thermoelectric voltages 

using different materials (wires) for connecting the  
Pt wire at the closed end of the electrolyte tube  
with the sensor housing 

 Electric contact with the electrolyte may  
degrade during thermal cycling 

 Comparatively small area of electric  
contact gives rise to high electrolyte resistance 

Testing of sensor accuracy in flowing gases 
Configuration of the working electrode 
 
 Metallic sheath (austenitic steel) with Pt mesh 
 Electric contact by pressing the 
 electrolyte against the Pt mesh 
 The contact with the mesh is 
 established at the highest  

testing temperature 
 Disadvantages are the different thermal 

expansion of YSZ tube and steel sheath (rupture 
of the mesh during cooling) and oxidation of the 
steel sheath at high temperature 
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Sensor accuracy required for efficient oxygen 
control in HLMs 

CO; actual 
CO; nominal 

Experience 

 Half an order of magnitude in oxygen 
concentration can significantly change 
oxidation mechanisms for F/M steels 

 Reproducibility under service conditions 
better than +20 mV/-45 mV at 400°C and 
+30 mV/ -65 mV at 700°C is needed 

Minimum requirement 

 Better than ± 20 mV at 400°C; ± 30 mV at 
700°C 

 Range of actual cO from 0.5 to 2 cO;nominal 

Practical limit 

 ± 5 mV, corresponding to ± 10% in cO, 
resulting from uncertainty in thermodynamic 
data used for calculating reference 
potentials 
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Pt/air sensor and voltmeter with RV > 1GΩ 

Accuracy of measurement resulting from 
comparison with metal/metal-oxide 
equilibria adjusted in LBE 

Fe oxide equilibria 
 Stepwise cooling or heating 
 Ar-15% H2 bubbling continuously through the  

LBE (5 ml/min) or quasi-stagnant 
 Oxygen potentials move from Fe-oxide to 

Mo/MoO2 equilibrium with temperature variation 
(Mo comes from wire submerged in the LBE) 

Co/CoO 
 Stepwise cooling  
 Ar 5.0 bubbling continuously through the LBE  

(5 ml/min) 
 Periodically addition of air (5 ml/min) at 700  

and 650°C 
 Maximum deviation from theoretical prediction  

< 6 mV 

Pb/PbO 
 Stepwise cooling 
  Ar 5.0 bubbling continuously through the LBE  

(5 ml/min) 
 Maximum deviation from theoretical prediction  

< 4 mV 
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Bi/Bi2O3 sensor and voltmeter with RV > 1GΩ 

Accuracy of measurement resulting 
from comparison with metal/metal-oxide 
equilibria adjusted in LBE 

Fe oxide equilibria 
 Stepwise cooling or heating 
  Ar-15% H2 mostly quasi-stagnant 
 Maximum deviation from theoretical prediction 

< 8 mV 

Co/CoO 
 Stepwise cooling  
 Ar 5.0 bubbling continuously through the LBE 

(5 ml/min) 
 Maximum deviation from theoretical prediction 

< 15 mV 

Pb/PbO 
 Stepwise cooling 
  Ar 5.0 bubbling continuously through the LBE 

(5 ml/min) 
 Maximum deviation from theoretical prediction 

< 8 mV 
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Long-term performance of oxygen sensors in 
the LBE loop CORRIDA 

 Criterion for proper operation ("plausibility") 
 Comparison of the output of all operating 

sensors on the basis of the calculated cO 

 In consideration of possible oxygen 
consumption and expected accuracy of the 
sensors 

CORRIDA loop for materials testing in 
flowing oxygen-containing LBE 

Longest operating times 

 Observed types of malfunction 
 Cracking of the electrolyte 
 Drifting of the sensor output to higher 

voltage, corresponding to lower cO 
(several orders of magnitude!) 
→ Fouling of the electrolyte surface? 

 Pt/air sensors are less prone to cracking 
and did not show drifting of the output 
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Oxygen-transfer device of the CORRIDA loop 

 Gas/liquid 
 Transfer across a plane liquid-metal surface 
 5.3 kg/s LBE 
 ~500 cm³/min gas (referred to 25°C) 
 λ-probe for monitoring pO2

 in the gas-space 
 Gas mixture optimized for maintaining 

cO=10-6 mass% at 550°C  
 500 cm³/min Ar humidified at 18°C  

(pH2O = 0.02 bar) 
 Continuous addition of 1–1.5 cm³/min ai 

(manually adjusted) 
 Gas mixture used for maintaining cO=10-6 

mass% at 450°C  
 500 cm³/min Ar humidified at 18°C  

(pH2O = 0.02 bar) 
 Discontinuous addition of 0.5 cm³/min 

air(manually adjusted) 

Seminar on Development of Oxygen Sensors for HLMs, October 14, 2013, Indira Gandhi Centre for Atomic Research                  Jürgen Konys 14 



Performance of the oxygen-control system 

 Gas composition/control strategy 
 Ar-H2-H2O corresponding to equilibrium at target  

oxygen concentration 
 Ar-H2-H2O, Ar-H2O or Ar with varying air addition 
 Optimized manual air addition to Ar-H2O 
 After implementation of automatic air addition  

to Ar or Ar-H2 
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Before  
and after 

automatic air 
addition has  

been implemented 



Long-term corrosion studies in flowing oxygen-
containing LBE conducted at KIT 

Temperature Flow velocity Nominal oxygen 
concentration 

Maximum 
exposure times 

Tested materials 

550 (+5)°C 2 (±0.2) m/s 10-6 mass% ~ 20,000 h CSEF (T91, E911, 
EUROFER), ODS 
steels, Type 316 SS, 
surface alloyed steels 
(Al), ... 

450 (+5)°C 2 (±0.2) m/s 10-6 mass% ~ 8000 h CSEF (T91, E911), 
pure Fe, Type 316SS, 
... 

Current exposure experiments: 

550°C 2 m/s 10-7 mass% 

450°C 2 m/s 10-7 mass% 

350°C 2 m/s 10-7 mass% 

Additionally, P92 and 15-15 CrNiTi (DIN 1.4970) 
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Corrosion of martensitic ODS steel in LBE at 550°C 
Influence of varying oxygen concentration 
 
 

 Comparatively thin 
spinel scale (12µm) 
 

 Significantly less 
internal oxidation 
 

 Cr-enrichment in 
oxide at metal/scale 
interface 

EDX linescan 

50 µm

4990 h 

only Fe-Cr-spinel 

IOZ 
Constant oxygen concentration 
cO ≈ 0.5×10-6 mass% 50 µm

5016 h 

Varying oxygen concentration: 
5×10-10 ≤ cO ≤ 5×10-6 mass% 

only Fe-Cr-spinel 
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Corrosion of martensitic ODS steel in LBE at 550°C 
Time dependence of oxidation under varying  
oxygen concentrations 
 
 

50 µm

10,006 h 

Line scan 

50 µm

2,018 h local formation of 
Fe-oxide (magnetite) 

Oxygen: 
5×10-10 ≤ cO ≤ 5×10-6 mass%; 
cO ≈ 0.5×10-6 mass% during the last 4990 h 
 
 Comparatively thin spinel scale (11 µm)  

and little internal oxidation 
 

Varying (mostly "low-oxygen") conditions during 
the first half of the exposure dominates the 
oxidation behavior 

Cr-
enrichment 
in oxide 
scale at 
metal/scale
interface 

Oxygen:  
5×10-9 ≤ cO ≤ 5×10-6 mass% 
 
 Spinel scale (11 µm); local formation of  

Fe-oxide 
 

 Little internal oxidation in  
comparison to scale formed  
at cO ≈ 0.5×10-6 mass% 
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Creep-to-Rupture tests in stagnant,  
oxygen-controlled liquid Pb at 650°C 
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Facility with infrastructure: 
 
 5 capsules for stagnant 

Pb with volume of 900 
ml. Oxygen control 
periphery for each 
capsule. 

 3 capsules for stagnant 
air with volume of 230 ml 

 
 
 
 
 
 
 

Gas supply: 
 

 Ar (continuous) −  
96-99 ml/min 

 Ar/H2 (continuous) −  
3 ml/min 

 synthetic air (pulsed) − 
1ml/min if E ≥ 965 mV  

 

 stagnant Pb or LBE 
 T = 450–650°C 
 cO = 10–7–10–6 mass.-% 

 through oxygen 
contained gas (gas/liquid 
oxygen-transfer) 

 E:965±20 mV → 965±2 mV 

CRISLA-capsule 

Pt/air oxygen sensor 



CRISLA Facility for Creep-Rupture Tests in Lead 
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PC-supported control system for oxygen content:  
user defined settings 
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Longitudinal (a)  and perpendicular          (b)  cross-sections of the steel ruptured  
                           after tR=2,982 h in Pb at 329 MPa  

 Oxide scale is irregular and contains Fe, Cr and O. The thickness is up to 30 µm. 
 Until 2,982h exposure to Pb, no dissolution of the steel was observed 

(Fe,Cr)xOy 

CrxOy 

CrxCy 

pore 
a 

(Fe,Cr)xOy 

CrxOy 

CrxCy 
W 

b 

12Cr-ODS steels after creep-to-rupture tests 
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Conclusions 

Electrochemical oxygen sensors Gas/liquid oxygen-transfer 
General  
conclusions 

 Accuracy of the observed oxygen 
potential sufficient for characterizing 
the conditions in the liquid metal 

 Correction of thermoelectric voltages is 
recommended 

 Absolute accuracy of the calculated cO 
is not assessed by the experimental 
testing method 

 Feasibility on the laboratory scale 
has been proven (e. g. operation of 
the LBE-loop CORRIDA) 

Experimental 
facilities  
(Materials testing, 
thermo-hydraulic 
experiments, etc.) 

 Reliable sensors with promising 
service time (30,000–45,000 h) are 
available 

 Sensors with Pt/air reference electrode 
are less prone to failure (in comparison 
to Bi/Bi2O3) 

 Appropriate pO2in is much higher 
than the threshold for PbO 
formation 

 Dispersion in the transfer-device 
however prevents PbO formation 

 Available mass of oxygen limits  the 
flux across the gas/liquid interface 

Industrial-scale 
plants 

 Design with higher structural stability of 
the electrolyte is required 

 Risk of contamination of the 
environment determines the choice of 
the reference electrode  

 Reasonable size of the transfer-
device will require much higher  flux 
than in experimental facilities 

 Experimental investigation of the 
kinetic limit is needed 
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