

Mehrphasenströmungen und Transportvorgänge in der Mikroverfahrenstechnik

- simulieren
- verstehen
- modellieren

Dr.-Ing. Martin Wörner

Karlsruher Institut für Technologie Institut für Katalyseforschung und –Technologie

Seminarvortrag am IMM, 9. Juli 2013

Taylor-Strömung mit Stofftransport in einem quadratischen Mini-Kanal

www.kit.edu

Outline

Introduction

Computational fluid dynamics in micro process engineering

- Status and developments
- Taylor flow in square capillaries
 - Numerical method and computational setup
 - Insight by scale-resolving simulations
 - Development of engineering models
 - Pressure drop
 - Residence time distribution
- Short survey on further ongoing projects in the group

Summary

Outline

Introduction

Computational fluid dynamics in micro process engineering

Status and developments

- Taylor flow in square capillaries
 - Numerical method and computational setup
 - Insight by scale-resolving simulations
 - Development of engineering models
 - Pressure drop
 - Residence time distribution
- Short survey on further ongoing projects in the group

Summary

Single-field Navier-Stokes eqs.

 $\nabla \mathbf{u}$

in

Two incompressible Newtonian fluids with constant viscosities

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) = -\nabla p + \nabla \cdot \mu (\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}}) \\
+ \rho \mathbf{g} + (\sigma \kappa \hat{\mathbf{n}}_{\Gamma} + \nabla_{\Gamma} \sigma) \delta_{\Gamma}$$

$$\mathbf{x} \in \Omega \neq \Omega(t)$$
Eqs. are valid in entire domain

- Density $\rho(\mathbf{x},t)$ and viscosity $\mu(\mathbf{x},t)$ are piecewise constant in each phase but are discontinuous at the interface
- Surface tension term
 - κ = interface curvature
 - δ_{Γ} = Dirac delta function with support on the interface
 - A method for describing the phase distribution is required!

Coupling between interface evolution and momentum eq.

Moving mesh method

- + Interface does not cut cells but separates phases
- Adaptive grid required; difficulty in handling breakup and coalescence

Front-tracking method

- + Does not impose artificial coalescence as VOF and LS method often do
- Complexity in handling break-up/coalescence

Level-set method

- + Avoids interface reconstruction; flexibility in handling topological changes
- Special measures necessary to reduce mass conservation errors

Volume-of-fluid method with interface reconstruction

- + Very good mass conservation
- Complex interface reconstruction/advection algorithms in 3D

Color-function VOF and conservative level-set meth.

- + Methods are rather easy to implement
- Special measures necessary to keep the interface thickness constant and uniform

Phase-field method

- + Allows for effective control of interface thickness; can handle moving contact lines
- For accurate results the diffuse interface region must be adequately resolved

W., Microfluid Nanofluid 12 (2012) 841-886

SPP 1506 Benchmark Taylor Flow

- SPP 1506 "Transport Processes at fluidic interfaces" DFG Deutsche Forschungsgemeinschaft
 - Guiding measure Taylor flow
 - Goal: establish benchmarks for detailed quantitative validation of CFD method and codes
- Measurements by experimental groups
 - $d_{\rm h}$ = 2 mm capillary with circular / square cross section
 - water-glyzerine solution / air; co-current upward flow
 - Single Taylor bubble: Boden/Hampel HZDR
 - Taylor flow: Meyer/Schlüter TUHH
- **TBSC** = **T**aylor **B**ubble **S**quare **C**hannel (3D)
 - contour of bubble shape (lateral and diagonal plane)
- TFSC = Taylor Flow Square Channel (3D)
 - velocity profiles from µPIV in liquid slug and liquid film
- TBCC = Taylor Bubble Circular Channel (2½D)
 - contour of bubble shape

Transport processes at fluidic interfaces	
DFG	SPP 1506

Case <u>Taylor Bubble Square Channel</u>

Bubble is not axi-symmetric!

10 09.07.2013 Dr. Martin Wörner

Comparison of numerical methods*,#

*Marschall, Boden, Lehrenfeld, Falconi, Hampel, Reusken, W., Bothe; Computers & Fluids (accepted) #For 2D test case see Aland et al., Int. J. Num. Meth. Fluids (accepted, available online)

- numerical result (OpenFOAM)

Interface resolving simulations: status and ongoing developments

- Hydrodynamics of two-phase flow including bubble and drop formation
- Coalescence phenomena &
- Mass transfer (realistic Schmidt numbers) &
- Interfacial transport of soluble and insoluble surfactants
- Coupling of two-phase flow and transport with chemical kinetics A

New SPP 1740 Reactive Bubbly Flows (Prof. M. Schlüter, TUHH)

Outline

Introduction

Computational fluid dynamics in micro process engineering

Status and developments

Taylor flow in square capillaries

- Numerical method and computational setup
- Insight by scale-resolving simulations
- Development of engineering models
 - Pressure drop
 - Residence time distribution
- Short survey on further ongoing projects in the group

Summary

Simulation method*

- In-house computer code TURBIT-VOF for details see Öztaskin et al. Phys. Fluids 21 (2009) 042108
- Volume-of-fluid method with piecewise linear interface reconstruction

Computational set-up for Taylor flow

Set-up

- Co-current downward flow of squalane (C₃₀H₆₂) and nitrogen
- Square channel (hydraulic diameter D_h = 0.5, 1, 2, 4 mm)
- Consideration of one unit cell
- - Periodic boundary conditions in vertical (axial) direction
- Prescribed parameters
 - **Gas content:** $\varepsilon_{G} = 0.2$ or 0.4
 - Unit cell length: $L_y / D_h = 4 \text{ or } 6$ (grid up to $80 \times 480 \times 80$ cells)
 - Pressure drop across the unit cell $Eu_{ref} = \Delta p_{uc} / (\rho_L U_{ref}^2)$

16 09.07.2013 Dr. Martin Wörner

17 09.07.2013 Dr. Martin Wörner

Channel size effects in Taylor flow

 Size $0.5 \times 0.5 \text{ mm}$ $D_{\rm h} = 0.5 \text{ mm}$ $Ca_{\rm B} = 0.202$ $Re_{\rm B} = 2.75$ $E\ddot{o} = 0.067$ Size $2 \times 2 \text{ mm}$ $D_{\rm h} = 2.0 \text{ mm}$ $Ca_{\rm B} = 0.213$

 $Re_{\rm B} = 11.6$ (inertia) $E\ddot{o} = 1.068$ (buoyancy)

Combined influence of $Re_{\rm B}$ and $E\ddot{o}$ for fixed value of $Ca_{\rm B}$

Very small influence on $\delta_{\rm F}/D_{\rm h}$ (film thickness) and $\kappa_{\rm front} D_{\rm h}$

Notable influence on $\kappa_{rear} D_h$ (inertial effect, known in literature)

W., J. Chem. Eng. Japan 46 (2013) 335

Influence of channel size

Non-dimensional bubble velocity Non-dim. specific interfacial area 2.5 Experimental data (upward flow) 2.3 Thulasidas et al. (1995) 0.5 mm square ch. $D_{L} = 2 \text{ mm}$ 1 mm Liu et al. (2005) 2 mm circular and square ch 2.2 2.0 $D_{1} = 0.9 - 3 \text{ mm}$ 4 mm U_B/J [-] Ξ 2.1 a_{.D} 1.5 esent simulations increase of Re 2.0 0.5 mm at fixed Ca_R results 1 mm in flatter rear meniscus 2 mm 1.0 4 mm 1.9 0.4 0.0 0.2 0.6 0.8 0.01 0.1 *Са*_В [-] *Ca*_B [-]

- For D_h ≤ 2 mm the influence of inertia (Re_B) and buoyancy (Eö) is very small → scaling with Ca_B
- For $D_{\rm h}$ > 2 mm the influence of inertia and buoyancy become important

Outline

Introduction

Computational fluid dynamics in micro process engineering

Status and developments

Taylor flow in square capillaries

- Numerical method and computational setup
- Insight by scale-resolving simulations
- Development of engineering models
 - Pressure drop
 - Residence time distribution
- Short survey on further ongoing projects in the group

Summary

Pressure drop models in literature

Kreutzer et al.*

Warnier et al.#

Hydrodynamic pressure drop in a unit cell

$$-\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{uc}} = -\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{slug}} \left(\frac{L_{\mathrm{slug}}}{L_{\mathrm{bubble}} + L_{\mathrm{slug}}}\right) \qquad -\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{uc}} = -\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{slug}} \left(\frac{L_{\mathrm{slug}} + D_B / 3}{L_{\mathrm{bubble}} + L_{\mathrm{slug}}}\right)$$

Frictional pressure drop in the liquid slug

$$-\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{slug}} = 32\frac{\mu_{\mathrm{L}}J_{\mathrm{total}}}{D_{\mathrm{h}}^{2}} \left(1 + a\frac{D_{\mathrm{h}}}{L_{\mathrm{slug}}}La^{0.33}\right)$$

 $J_{\text{total}} = J_{\text{G}} + J_{\text{L}}, \quad La = \sigma \rho_{\text{L}} D_{\text{h}} / \mu_{\text{L}}^2$

Models do not involve Ca_B or Re_B (only the ratio of both, La)

 $-\left(\frac{\mathrm{d}P}{\mathrm{d}z}\right)_{\mathrm{shug}} = 32 \frac{\mu_{\mathrm{L}} J_{\mathrm{total}}}{D_{\mathrm{s}}^{2}} \left(1 + a \frac{D_{h}}{L_{\mathrm{shug}} + D_{\mathrm{s}}/3} L a^{0.33}\right)$

Fitting coefficient

a = 0.07 numerical

a = 0.17 experimental

*Kreutzer et al. AIChE J. 51 (2005) 2428

a = 0.1 experimental

[#]Warnier et al. Microfluid Nanofluid 8 (2010) 33

22 09.07.2013 Dr. Martin Wörner

Pressure drop model Boran & W.

- Goal: development of a "mechanistic" model for the hydrodynamic pressure drop along one unit cell
- The model shall involve only "a priori" known quantities
 - Physical properties
 - Channel hydraulic diameter
 - Superficial velocities

$$\rho_L, \mu_L, \sigma, g$$

 D_{μ}

$$J_{\rm L}, J_{\rm G} \longrightarrow J_{\rm total} = J_{\rm G} + J_{\rm L}$$

The following non-dimensional numbers can be defined

$$\beta = \frac{J_{\rm G}}{J_{\rm total}}, \quad Ca_{\rm J} = \frac{\mu_L J_{\rm total}}{\sigma}, \quad La = \frac{\sigma \rho D_{\rm h}}{\mu_{\rm L}^2}$$

The pressure drop along a unit cell consists of two parts

- Pressure drop in the liquid slug
- Pressure drop in the liquid film along the bubble

$$\frac{\Delta P_{\rm uc}}{L_{\rm uc}} = \frac{\Delta P_{\rm slug}}{L_{\rm uc}} + \frac{\Delta P_{\rm film}}{L_{\rm uc}}$$

Pressure drop along liquid film

Young-Laplace equation at the front and rear meniscus

 $p_{\mathrm{B,front}} \approx p_{\mathrm{L,front}} + \sigma \kappa_{\mathrm{front}}, \qquad p_{\mathrm{B,rear}} \approx p_{\mathrm{L,rear}} + \sigma \kappa_{\mathrm{rear}}$

The pressure in the bubble is about constant so that

$$\Delta P_{\text{film}} = p_{\text{L,rear}} - p_{\text{L,front}} = \sigma(\kappa_{\text{rear}} - \kappa_{\text{front}})$$

$$\frac{\Delta P_{\text{film}}}{L_{\text{uc}}} = \left(\kappa_{\text{rear}} - \kappa_{\text{front}}\right) \frac{\sigma}{L_{\text{uc}}} = \left(D_{\text{h}}\kappa_{\text{rear}} - D_{\text{h}}\kappa_{\text{front}}\right) \frac{\sigma}{D_{\text{h}}L_{\text{uc}}}$$

 \rightarrow we need models for the non-dimensional bubble front and rear curvatures $D_h \kappa_{rear}$ and $D_h \kappa_{front}$

Data for front and rear curvature

Modeling of rear curvature

The non-dimensional rear curvature depends on $Ca_{\rm B}$ and $Re_{\rm B}$

It is modeled as the sum of two contributions: $\kappa_{rear} = \kappa_{rear}^{Re=0} + \kappa_{rear}^{Re>0}$

28 09.07.2013 Dr. Martin Wörner

Rear curvature in limit $Re_{\rm B} = 0$

Closure of the model

At this stage, the model is not closed since the front and rear curvatures depend on $Ca_{\rm B}$ which involves the unknown bubble velocity

$$Ca_{\rm B} = \frac{\mu_{\rm L}U_{\rm B}}{\sigma}$$

• As a remedy we relate $U_{\rm B}$ to the total superficial velocity $J_{\rm total}$

$$\psi = \frac{U_{\rm B}}{J_{\rm total}} \longrightarrow Ca_{\rm B} = \frac{U_{\rm B}}{J_{\rm total}} \frac{\mu_{\rm L} J_{\rm total}}{\sigma} = \psi Ca_{\rm J}$$

The ratio ψ is obtained by fitting experimental and numerical data

$$\boldsymbol{\psi} = \boldsymbol{\psi}(Ca_{\mathrm{J}})$$

Relation between ψ and $Ca_{\rm J}$

Summary of pressure drop model

Input: $\rho_L, \mu_L, \sigma, g, D_h, L_{uc}, J_L, J_G \rightarrow \beta, La, Ca_J$ $\rightarrow \psi = \left(\frac{1 + 3.33\psi^{2/3}Ca_J^{2/3}}{1 + 2\psi^{2/3}Ca_J^{2/3}}\right)^2$

Model:

$$\begin{aligned} \frac{\Delta P_{\rm uc}}{L_{\rm uc}} &= \frac{C_{\rm f}}{2} \frac{\mu_{\rm L} J_{\rm total}}{D_{\rm h}^2} \Big[1 - 1.5\beta (1 - \beta) - \beta^2 \Big] + \Big(D_{\rm h} \kappa_{\rm rear}^{Re=0} + D_{\rm h} \kappa_{\rm rear}^{Re>0} - D_{\rm h} \kappa_{\rm front} \Big) \frac{D_{\rm h}}{L_{\rm uc}} \frac{\sigma}{D_{\rm h}^2} \\ D_{\rm h} \kappa_{\rm rear}^{Re=0} &= \begin{cases} 2 - 1.354\psi Ca_{\rm J} & \text{for } \psi Ca_{\rm J} \le 0.15 \\ 1.75 (1 - \psi Ca_{\rm J}) & \text{for } \psi Ca_{\rm J} > 0.15 \end{cases} \\ D_{\rm h} \kappa_{\rm rear}^{Re>0} &= (0.0013\psi^2 LaCa_{\rm J}^2 - 0.1185)\psi^2 LaCa_{\rm J}^2 & \text{for } \psi^2 LaCa_{\rm J}^2 \le 40 \\ D_{\rm h} \kappa_{\rm front} &= 7.07 - \frac{7.07 - 2.121}{1 + 2.961\psi^{0.916} Ca_{\rm J}^{0.916}} \end{aligned}$$

Comparison of pressure drop models

■ The new model is in good agreement with DNS data (not surprising) → compare model with experimental pressure drop data

Residence time distribution

- Liquid flows in micro-channels are usually laminar and species diffusivities are usually low (high Schmidt number)
- The RTD is therefore significantly affected by the nonuniform velocity distribution \rightarrow the RTD is rather broad
 - Conventional RTD models (PFR, CSTR, axial-dispersed plug flow model) are often not appropriate
 - Influence of channel shape on diffusion-free RTD (analytical) W., CES 65 (2010) 3499, Erdogan & W., CEJ 227 (2013) 158
- Segmented flow (Taylor flow) narrows the RTD (A. Günther)

RTD in Taylor flow

36

Evaluation of the <u>diffusion-free</u> RTD from simulation results by tracking a set of virtual particles and recording the time the particle needs to travel a certain axial distance

RTD in Taylor flow RTD of one unit cell be modeled as PFR-CSTR in series Determining the RTD of multiple unit cells by convoluting the single unit-cell RTD fails Reason: the liquid in a unit cell consists of two regions: by-pass flow and recirculation flow (Thulasidas et al. 1995) region with complete bypass flow bypass flow recirculation flow $U_{\rm B}$ $U_{L,\max}$

In absence of diffusion there is no exchange across the dividing streamline \rightarrow neighboring units cells are <u>not</u> independent

The size of both regions depends on $\psi = U_{\rm B} / J_{\rm total}$ for rectangular channels see Kececi, W., Onea, Soyhan; Catalysis Today 147S (2009) S125

dividing streamline

A reliable RTD model should account for this G

 $U_{L,\max}$

Outline

Introduction

Computational fluid dynamics in micro process engineering

- Status and developments
- Taylor flow in square capillaries
 - Numerical method and computational setup
 - Insight by scale-resolving simulations
 - Development of engineering models
 - Pressure drop
 - Residence time distribution

Short survey on further ongoing projects in the group

Summary

39 09.07.2013 Dr. Martin Wörner

Mass transfer and chemical reaction

Without chemical reaction Fast heterog. reaction (1st o.)

Short bubbles are more efficient

Long bubbles are more efficient

Scale separation in mass transfer

Ratio of the smallest scales in the concentration and velocity field and the thickness of the boundary layers

$$\frac{\lambda_{\rm c}}{\lambda_{\rm u}} \propto \frac{\left(\nu D^2 / \varepsilon\right)^{1/4}}{\left(\nu^3 / \varepsilon\right)^{1/4}} \propto \sqrt{\frac{D}{\nu}} = \frac{1}{\sqrt{Sc}} \qquad \frac{\delta_{\rm c}}{\delta_{\rm u}} \propto \frac{L / \sqrt{Pe}}{L / \sqrt{Re}} = \frac{1}{\sqrt{Sc}}$$

- Liquids: $Sc = O(1000) \rightarrow$ the grid required to resolve all scales in the concentration field is 30 times finer than for the velocity field (in 3D this corresponds to $30^3 = 27\ 000$)
- This makes numerical methods that use the same grid for the velocity and concentration field very inefficient ⇒ use of a <u>hierarchical grid</u>, i.e. a finer grid for the concentration field than for the velocity field (PhD C. Falconi)

Helmholtz Alliance "Energy efficient chemical multiphase processes"

- Scale resolving simulations of catalytic multi-phase flows in structured reactors
 - Oxidation of isobutane
 - Hydrogenation of nitrobenzene
- Single channel of a monolith reactor
 - Coupling TURBIT-VOF / DETCHEM
- Portion of a solid sponge
 - Phase field simulations (OpenFOAM)

DNS of bubble swarm flows

BMBF Project "Multiscale Modelling of Multiphase Reactors"

Development of scale-up strategies that will allow a model based design of industrial scale multiphase reactors

Contributions of KIT (PhD project of S. Erdogan)

- Investigate pseudo-turbulence in bubble swarm flows by DNS
- Evaluation of all terms in the transport equation for liquid phase turbulent kinetic energy from DNS data
- Analyze, assess and improve engineering models for bubble-induced turbulence in two-fluid model
- Implementation of improved models in OpenFOAM, validation by experiments of project partners

Conclusions

- High potential of Taylor flow for intensification of heterogeneously catalyzed gas-liquid processes in microreactors
- Complicate interaction between two-phase flow hydrodynamics, transport of mass and heat, and chemical reaction
- Understanding and quantification of this non-linear interaction (which involves various length and time scales) is a key issue toward the design and optimization of multi-phase micro reactors
- Detailed numerical investigations provide a promising tool for understanding the phenomena and for developing engineering models
- Current status of interface resolving numerical simulation methods
 - Hydrodynamics of two-phase flow including bubble and drop formation \checkmark
 - Coalescence phenomena 🔗
 - Mass transfer (realistic Schmidt numbers Sc = 1000) &
 - Interfacial transport of soluble and insoluble surfactants &
 - Coupling of two-phase flow and transport with detailed chem. kinetics &

Acknowledgements

- PhD students
 - W. Sabisch (2000)
 - B. Ghidersa (2004)
 - M. Ilić (2005)
 - A. Onea (2007)
 - X. Cai, C. Falconi,
 S. Erdogan, M. Woo
- Erasmus students from Sakarya University (Turkey)
 - F. Özkan (2006)
 - Ö. Keskin (2007)
 - M. Öztaskin (2007)
 - S. Kececi (2008)
 - A. Boran (2010)

