

Ductilisation of W: Synthesis, analyses and characterization of W-laminates made of W-foils

J. Reiser¹, M. Rieth¹, B. Dafferner¹, A. Hoffmann²

¹ Karlsruhe Institute of Technology, Institute for Applied Materials, Germany ² PLANSEE SE, Reutte, Austria

18th PLANSEE seminar, 3 – 7 June 2013, Reutte

INSTITUTE FOR APPLIED MATERIALS, APPLIED MATERIALS PHYSICS

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

What is the problem?

- Divertor applications ask for a high temperature (1000°C) structural material
- W is the metal with the highest melting point of all metals ($T_s = 3422^{\circ}C$)
- Disadvantages:
 - Low fracture toughness, K_{IC} [MPa m^{1/2}]
 - High brittle-to-ductile transition temperature (BDTT)

picture: ITER

Tokamak fusion reactor

picture: PLANSEE SE

Main question

Is it possible to expand the ductile properties of a W-foil to the bulk?

Contents

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

Contents

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

	W-foil	W-laminate plate	W-laminate pipe	application
Microstru	ucture of W-	foil, 100 μm		Karlsruhe Institute of Technolog
Grain siz	e: eceived: 0.5 x 3 >	κ 15 μm³	z 1 h/ z 1 h/ z 800°C 1000°C	1 h / z 1 h 1300°C 2000°
■ 1 h /	2700°C: 100 x 1	$00 \times 100 \ \mu m^3$ y	15 um	15 um 15 u
 Texture: Sub grain 	{100} <011> ;1 ns: nearly free	from disl.	► x = RD	in and participation of the pa
Begin rxx	k: 1200°C			
(pictures: J. Reiser,	Y. Xiaoou, D.E.J. Armst	rong)	RD RT	
				20 h / 1400°C
			A STA	
RT		50 μm	7-12-1	and the second se
			500 nm	
1 h / 2700°C	KQ	50 μm		500 nm

5

2700°C

Institute for Applied Materials, Campus North, KIT

Contents

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests

Synthesis of W-laminate plates

- Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test

Outlook: W-laminates for high heat flux applications

	U		

W-laminate: microstructure

The mechanical properties of a W-laminate depend on

- the condition of the W-foil as well as
- the interface

after the joining process.

	W-foil	W-laminate	e plate	W-laminate	pipe	application
W-lamina	te: microstr	ucture				Karlsruhe Institute of Technology
Condition	of the W-foil:					
As-rec	ceived					
Recry	stallized					
	of the interface	e:				
Vvetta	bility					
	solution	40				
AgCu	Cu		Ti		Zr	
	A FL SM	· ·				and the second second
W	W			The state		A MARKEN
	20 um	20.00		20	e.]	20
	ου μπ	30 µ m	The second	A A Somm	T. R. C. P.	30 µm

 $T_{S}^{T_{i}} = 1670^{\circ}C$

$$T_S^{AgCu} = 780^{\circ}C \qquad T_S^{Cu} = 1085^{\circ}C$$

 $T_S^{Zr} = 1855^{\circ}C$

Contents

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

	-toil	

W-laminates: pipes

- Extrusion \rightarrow very challenging
- Drilling a hole in a rod
- NEW: by rolling up a W-foil

Contents

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test

Outlook: W-laminates for high heat flux applications

W-toil	W-laminate plate	W-laminate pipe	application
cientific outlook:	ductility and to	ughness	Karlsruhe Institute of Technology
Ductility:			
Direct: TEM			
Indirect: SRS, V =	= fingerprints of the kin	etics of pl. deforma	ation
Toughness:			
Direct: TEM			
Indirect: ΔH _{DDT} (K	ις) vs. ΛΗμ, vs. ΛΗμ		
Strain rate jump test PT W 0.3	Etch pitting i	n poly. W W foil: in-	situ TEM tensile
		test	
2500 W 0.3 mm, 0°]			AND SALES
2000 -		A BASS	THE STREET
			A Barris
se 1000			The second second
500			A CONTRACTOR
· · · · · · · · · · · · · · · · · · ·			
0 1 2 3 strain [%]			
		M. Klimen	kov, U. Jäntsch (KIT)

	W-foil	W-laminate plate	W-laminate pipe	application
Technical	outlook: H	HF applicatio	ns	Karlsruhe Institute of Technology
W-lamina	tes for water- a	nd helium-cooled	d divertors and CS	SP
Solar tower	W-laminate plate:	deep drawing	5 mm	0.5 mm
	W-laminate plate: interlayer	W Cu W 316Ti 1 mm	H. G IPP	ireuner, B. Böswirth,
ABENGOA Sol	W-laminate pipe: structural part	W_Cu 5 mm	500 μm	ate pipe 10 mm

Thank you for your attention

The authors are grateful to:

PLANSEE SE, University of Oxford, EFDA and our colleagues from IAM (KIT).

Institute for Applied Materials, Campus North, KIT