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Abstract 

In this work, we present the implementation of a phase field method in OpenFOAM® for 
simulation of spreading phenomena involving moving contact lines. The method is 
verified and validated by several one-dimensional and two-dimensional test problems 
and the influence of various numerical parameters is investigated. A critical issue is the 
diffusion term in the Cahn-Hilliard equation. Accurate results are obtained provided the 
interfacial layer is resolved by at least four mesh cells and the Cahn number is  0.01. 
The coupling of the phase-field method with the single-field Navier-Stokes equation with 
surface tension term is validated by the drop deformation in shear flow. Simulations for a 
droplet on a smooth solid surface demonstrate the ability of the method to describe 
capillary-driven spreading processes caused by a mismatch of the initial and equilibrium 
contact angle for various values of the surface wettability. 

1 Introduction 

The spreading of liquid droplets on solid surface is a crucial process in many industrial 
applications, such as coating and painting, lubrication, ink-jet printing, adhesives and 
insecticides, oil recovery from porous rock, and reacting two-phase flows in chemical 
sponge reactors, etc. In addition to the fundamental issue of whether a liquid wets a 
given solid, many of these industrial applications require precise knowledge of the 
manner in which physical properties of the bulk flow and solid surface influence the 
spreading dynamics. To gain these insights, CFD can be a valuable tool. 

In order to carry out reliable CFD simulations of the dynamic spreading process, it is vital 
to accurately model the motion of the contact line where the two-phase flow is in contact 
with the solid surface. In this context, conventional sharp-interface two-phase 
hydrodynamic models suffer from a paradox between the moving contact line and the 
no-slip boundary condition at the solid wall [1]. The latter leads to a stress singularity at 
the moving contact line where continuum fluid mechanics breaks down at the molecular 
length scales involved. To resolve this problem, various methods have been proposed 
(e.g., the precursor model [2] and the slip model [3]). 
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Among the various methods for interfacial simulations of two-phase flows [4], the phase 
field method is probably the most promising approach for handling moving contact lines. 
It is a diffuse interface method that treats the interface between two immiscible fluids as 
a transition region of small but finite width, endowed with surface tension [5]. Based on 
fluid free energy instead of force, the method can be traced to van der Waals a century 
ago [6]. Originally employed to model the initial stages of spinodal decomposition [7], the 
phase field method has become popular just in recent years as a numerical technique 
for simulating two-phase flows with a wide range of hydrodynamic and interfacial 
phenomena [8]. In our study, the most significant feature of this method is that it 
resolves the stress singularity at solid wall via a diffusive mechanism induced by a 
chemical potential gradient [9]. In addition to this advantage, the phase field method has 
other merits. First, from a computational perspective, modeling fluid interfaces as having 
finite thickness greatly simplifies the handing of topological transition of interfaces. Thus, 
this method has been successfully used to model breakup and coalescence of droplets 
[10]. Second, due to the energy-based formulation, it is straightforward to treat interfacial 
dynamics and rheology in a unified framework and thus to describe two-phase flows of 
complex non-Newtonian fluids [11]. Third, as an interface-capturing method, the phase 
field method treats the interface as a diffuse layer in a physical sense. It is distinct from 
other interface-capturing methods (e.g. the Volume-of-fluid and Level-set method) where 
the interface is sharp conceptually but handled as a diffuse layer by numerical 
regularization [12]. Thus in the phase field method, the modeling of interface is built on a 
rational physical basis and the artificial numerical efforts for interface regularization are 
reduced. 

Alongside with these advantages, several issues inherent to the phase field method 
have to be handled carefully for numerical simulation. First, sufficient mesh resolution is 
needed to resolve the interface with finite thickness and thus to accurately capture 
interfacial phenomena there. Second, for numerical simulation with acceptable 
computational cost, the interface thickness is chosen with reference to the mean flow 
geometry rather than from that in real physics (which is usually of the order of 
nanometer). Thus it is necessary to investigate the influence of the interface thickness 
choice on the flow field. Third, as the motion of contact lines is driven by a diffusive 
process, it is critical to identify a suitable value/range for the diffusion coefficient and 
study the sensitivity of the spreading process with respect to this coefficient.  

In this paper, we present our work on the implementation of the phase field method in 
OpenFOAM®, its verification, and first applications for simulating the spreading of a 
droplet. The paper is organized as follows. In section 2 we introduce the mathematical 
formulation of the phase field method for two-phase flows of incompressible, viscous 
and isothermal fluids and give an overview on the implementation of the method in 
OpenFOAM®. In Section 3, we discuss test case results for verification of the diffusion 
term in the Cahn-Hilliard equation and for surface tension, and present first results for 
the capillary-driven spreading of a droplet on an ideally flat surface. In section 4 we 
provide conclusions and outline future work. 
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2 Mathematical formulation 

2.1. The phase field method 

For a two-phase flow of incompressible, viscous and isothermal fluids, we introduce an 
order parameter (C) to characterize the two different phases. C varies rapidly but 
smoothly in the thin interfacial layer and is uniform in the bulk phases where it takes 
distinct values CA and CB; here we use CA = 1 and CB = −1. The transition layer from CA to 
CB represents the interfacial region. This binary fluid system is modeled by a Helmholtz 
free energy F which has the following form [6] 

 21
( ) ( ) d

2V
F C C V     

   (1) 

where V is the system domain. The first term accounts for the interfacial energy density 
and the second one is the bulk energy density. Ψ is a double-well potential function and 
is set conventionally as Ψ = (1/4)(C+1)2(C−1)2. α and β are two positive model constants. 
The chemical potential Φ is defined as the variational derivative of the free energy F with 
respect to the order parameter1: 
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We can obtain the equilibrium interface profiles by minimizing F, i.e., solving Φ(C) = 0. 
So its solutions are the equilibrium profiles: CA = 1 and CB = −1 that represent the two 
bulk phases and a one-dimensional (say, along the x-direction) non-uniform solution for 
the interface: 
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where ξ = (α/β)0.5 is the mean field thickness. We define the equilibrium interface 
thickness ε as the distance from C = −0.9 to C = 0.9, so that ε = 2(2)0.5 ξ tanh-1(0.9) = 4.164ξ. 
This width contains 98.5% of the surface tension stress [5]. In equilibrium, the surface 
tension σ equals to the integral of the free energy density along the interface [13]: 
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1 In this paper we use the prime symbol to denote the first derivative of a function with respect to the order 
parameter C. 
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Thus the interface thickness ε and the surface tension σ can be controlled through the 
parameters α and β. 

Cahn and Hilliard [14, 15] extended the problem to time-dependent situations by 
approximating interfacial diffusion to be proportional to chemical potential gradients, i.e., 
the Cahn-Hilliard equation: 

 2( )
C

C
t

 
   


u  (5) 

where u is the velocity field. The term on the right-hand-side of Eq. (5) accounts for a 
diffusive flux of the chemical potential gradient, where the mobility κ is a numerical 
parameter that controls the diffusion process. This diffusive mechanism serves to 
resolve the paradox between the moving contact line and the no-slip boundary condition 
at the solid wall. By making the assumption that the interface at the wall is at or near 
local equilibrium as the liquid wets the solid, a Neumann boundary condition for C is 
derived as follows: 

 e
s

cos
ˆ '( )C g C

 


  n   (6) 

where g(C) = 0.5−0.75C+0.25C3 is a smoothly varying function that is equal to 0 for phase 
A (CA = 1) and 1 for phase B (CB = −1). e is the equilibrium (static) contact angle. The 
wettability of the solid substrate is represented by the value of e.

 

2.2.  The equations of fluid motion 

The single-field Navier-Stokes equations for the incompressible two-phase flow can be 
expressed as follows: 

 0 u   (7) 

 T( ) ( ( ))p
t
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Here, ρ is the density of the mixture and g is the gravitational acceleration. In the sequel, 
the two phases have always the same density and the gravitational force is neglected. 
The viscosity of the binary mixture is 

  1
( ) ( 1) ( 1)

2 A BC C C       (9) 

where μA and μB are the viscosity of phase A and B, respectively. The surface tension 
force fst is expressed in a potential form by the order parameter and the chemical 
potential [5]: 

 C   stf  (10) 
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2.3. Non-dimensional formulation 

We define the following dimensionless variables: 

 * * * * *, , , ,
A A

x u tU pL
x u t p

L U L U


 

       (11) 

where L and U represent a characteristic length and velocity scale respectively. 
Dropping the asterisks, we have the following dimensionless system. 

The chemical potential field is: 

 2 2'( )C Cn C     (12) 

The Cahn-Hilliard equation reads:  
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The Neumann boundary condition for the order parameter is converted into: 
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The dimensionless form of the Navier-Stokes equations is: 

 0 u   (15) 
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where the surface tension force is given by 

 
1

C
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and the formulation for the mixture viscosity is: 
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The dimensionless numbers are the Reynolds number (Re), the Capillary number (Ca), 
the Peclet number (Peκ) and the Cahn number (Cn) defined as 
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The Reynolds number is the ratio between the inertial and viscous forces. The Capillary 
number indicates the ratio between the viscous and surface tension forces. The Peclet 
number expresses the ratio between the convective and diffusive transports of the order 
parameter. It incorporates the mobility κ and thus is used to quantify the diffusion 
process that governs the motion of contact lines. The Cahn number represents the ratio 
of interface thickness and characteristic macroscopic length scale. 

As said before, we consider the mobility and interface thickness as numerical 
parameters rather than physical ones. In our non-dimensional equations, Peκ and Cn are, 
therefore, to be considered as numerical parameters as well. One goal of this paper is to 
identify suitable ranges for both quantities. For this purpose we study their influence on 
the solution of various test problems in Section 3. 

2.4. Implementation in OpenFOAM® 

For implementation of the phase field method in OpenFOAM® we use the solver 
icoDyMFoam as starting point. The Cahn-Hilliard equation is added into the source code 
as a scalar transport equation. The convection term is implemented in an implicit and 
the diffusion term in an explicit manner. Due to its free energy formulation, the diffusion 
term consists of in-total fourth order derivative (see Eq. (12) and Eq. (13)). This is 
uncommon in usual transport equations in hydrodynamics and thus has not been dealt 
with in most OpenFOAM® applications. Here, we implement this term by substituting the 
chemical potential field into the Cahn-Hilliard equation. In the next section we shall 
present our verification work on this implementation. The surface tension force 
formulated from the order parameter and chemical potential is inserted as an explicit 
source term into the Navier-Stokes equation. In the implementation above, we use the 
linear (central differencing) interpolation scheme for the convection term, and the 
surface normal gradient scheme with explicit non-orthogonal correction for the Laplacian 
operators in the diffusion term. For time discretization we adopt the backward 
differencing scheme which is a second-order implicit method. The main procedure for 
advancing the solution from time-step n to n+1 is as follows: 

(1) Update the chemical potential field using the order parameter field at time-step n 
according to Eq. (12). 

(2) Obtain the order parameter at time-step n+1 by solving the Cahn-Hilliard equation 
(13) using the chemical potential from step (1) and the velocity field at time-step n. 

(3) Compute the surface tension force according to Eq. (17) and the mixture viscosity by 
Eq. (18) using the order parameter at time-step n+1. 

(4) Obtain the velocity field at time-step n+1 by solving the Navier-Stokes equations 
given by Eq. (15) and Eq. (16) with the PISO algorithm. 
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3 Verification and Validation by Test Problems 

3.1. Verification on the diffusion term 

As stated previously, we need to verify our implementation of the diffusion term. It is 
carried out by a one-dimensional test for a flat interface to solve the following equation 
without the convection term 

  2 2 2'( )
C

C Cn C
t


  


 (20) 

The final equilibrium simulation results for C are compared with the respective analytical 
solution given by Eq. (3). 

We run this simulation on a 1D domain of dimensionless length 1 with three different 
mesh resolutions: Δx=0.02, Δx=0.01 and Δx=0.005. The non-dimensional thickness of the 
interfacial region is ε = 0.04164. The number of cells in the interfacial region NC = ε/Δx 
then varies from 2 to 8 for the different grids. As shown in Figure 1, good agreement 
between the numerical and analytical solution is achieved supposed the interfacial 
region is resolved by at least 4 mesh cells. 

 

Figure 1: Comparison between analytical and computed equilibrium order parameter 
profile across the diffuse interface region for three different grids. The Cahn number is 
Cn = 0.01. 



8 

Next we extend our verification to a 2D test. Physically, the order parameter C should be 
in the range [−1, 1]. However, from the 2D simulation we get a field of the order 
parameter in the range [−1+ΔC, 1+ΔC] with a shift ΔC=0.0052 (Figure 2a). Yue et al. [16] 
found that this shift is related to the dimensionless interface thickness, namely the Cahn 
number (Cn). It is a phenomenon inherent to 2D or 3D modeling of the phase field 
method. By theoretical analysis, they gave for 2D problem the following linear relation: 

 
2

3
C Cn    (21) 

To verify this analysis, we carry out numerical simulations using different values of Cn. 
Figure 2b shows a very good agreement between numerical and theoretical results. As 
Cn is getting smaller, the order parameter shift decreases and the upper and lower 
bounds are approaching the physical ones. This is desirable for guaranteeing mass 
conservation of the droplet. On the other hand, as Cn accounts for the interface 
thickness, it is not supposed to be too small otherwise a very fine mesh would be 
required to resolve this very thin interface. To make a compromise between accuracy 
and computational cost, Cn=0.01 is chosen in all the following simulations. 

 

Figure 2: (a) the order parameter field from the 2D simulation; (b) comparison between 
the simulation results and the analytical solution on the relation between the Cahn 
Number (Cn) and the shift of the order parameter (ΔC).  
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3.2. Droplet deformation in an unbounded shear flow 

In the phase field method the surface tension force is formulated in a potential form. This 
is different from other interface-capturing methods that represent this force by the 
interface curvature [17]. So here we verify and validate the implementation of the 
surface tension force in the Navier-Stokes equation. To achieve, this we consider a 2D 
problem: due to a shear flow, an initially spherical droplet deforms to an elliptic one (as 
shown in Figure 3). For this flow scenario, Taylor [18] gave an analytical solution that 
relates the deformation parameter (D) to the Capillary number (Ca) 

 
 0.58D Ca   (22) 

This analytical solution2 is derived based on the assumptions of creeping flow, same 
viscosity and density of the two phases and an unbounded domain. 

 

 

Figure 3: Sketch of the deformation of an initially spherical droplet to an ellipsoid shape 
in a shear flow. 

                                            

2 In Taylor’s original paper, the capillary number is formulated using the shear rate and initial droplet 
radius. Here, the formula is adapted for the definition of the capillary number used in this work. 
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The droplet deformation simulation is started from the steady state of a precursor 
simulation where the Cahn-Hilliard equation is solved without convection term in order to 
reach an equilibrium state of C with a hyperbolic tangent profile across the interface. 
This calculation is carried out in a similar manner to the 2D test for the verification on the 
diffusion term. Due to the energy-based formalism of the phase field method, this 
preliminary simulation is necessary since it provides an order parameter field of 
complete saturation as an initial condition for further computation. This strategy is also 
adopted in [19]. 

Based on the initial condition above, we start the primary simulations by imposing a 
shear flow via setting the dimensionless velocities at the top and bottom boundary to +1 
and −1 respectively. In Figure 4 we compare the numerical results for various values of 
Re and Ca with Taylor’s analytical solution. For fixed values of Re, an almost linear 
relation between Ca and D is found. As Re decreases and approaches 0, the simulation 
results are converging to Taylor’s analytical solution. This is reasonable since the 
analytical solution is made based on the creeping (Stokes) flow assumption where Re is 
assumed to be 0. 

 

Figure 4: Comparison between the numerical results and Taylor’s analytical solution for 
the relation between the Capillary number Ca and the deformation parameter D. 
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3.3. Droplet spreading on a flat surface 

We perform a 2D simulation of the spreading of a droplet over a flat surface. The 
spreading is driven by capillary force while gravitational effect is assumed to be 
negligible. We use this test case to validate the ability of the implemented phase field 
method to adequately describe capillary flows and moving contact lines. 

We run this simulation on a rectangular domain of dimensionless size 4  2. The mesh 
resolution is Δx=0.01 so that there are 4 cells to resolve the interface layer. The time-step 
size is set as Δt = 0.001. The maximal CFL number is around 0.002. 

On the bottom solid wall, no-slip boundary condition is set for velocity and zero-gradient 
for pressure while the Neumann boundary condition for order parameter is set according 
to Eq. (14) with the help of the functionality groovyBC. For the outlets of the domain, 
zero-gradient boundary condition is set to both velocity and order parameter while 
pressure is specified as 0. The initial condition for the order parameter field is provided 
by the precursor calculation as described before. 

 

Figure 5: Simulation results for the capillary-driven spreading of a droplet on a 
horizontal flat surface for different instants in time. The dimensionless parameters are 
set as: Re = 1.0, Ca = 1.0, Peκ = 1000, Cn = 0.01. Both phases have the same viscosity. 
The initial and equilibrium contact angles are θ0 = 155° and θe = 90° respectively. The 
white arrows represent the velocity field. 
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The computation is started from fluids at rest and a droplet with an initial contact angle 
θ0=155°, see Figure 5a. The equilibrium contact angle is set to θe = 90° which is specified 
as boundary condition. Due to the mismatch between θ0 and θe, the droplet begins to 
spread and the actual contact angle converges to θe. From the hydrodynamic theory, the 
driving force for the spreading is the interface-curvature-induced capillary force that 
overcomes the viscous resistance of the ambient fluid exerted on the droplet. At the first 
stage of spreading (Figure 5b), contact lines are moving fast, which brings about strong 
flow vortices nearby. Yet the global shape of the droplet has not been influenced and the 
droplet height remains almost stationary. At later stage (Figure 5c), the global shape is 
experiencing a noticeable change with a rapid decline of the droplet height. It leads to a 
strong downward flow. Meanwhile the largest vortices appear away from the contact 
lines and gradually dissipate while the droplet is slowly spreading to the final equilibrium 
state (Figure 5d), where the capillary force is in balance with the viscous resistance. The 
final contact angle agrees well with the specified equilibrium value. Similar spreading 
behaviors and flow fields are also reported in literature (e.g. [20-22]). 

As mentioned previously, the motion of contact lines on the solid wall is governed by a 
diffusion process. So it is essential to make a sensible choice of the diffusion coefficient, 
that is, the Peclet number (Peκ). In the spreading simulation above, we chose Peκ = 1000. 
This choice is made with guidance from Jacqmin [5] who pointed out that the flow would 
be stagnant if the diffusion completely dominates the convection; on the other hand, if 
the diffusion is too small compared to the convection, the interface would be thinned or 
thickened by the flow. Through theoretical analysis, he gave the mobility parameter κ a 
limit [O(ξ2), O(ξ)]. Equivalently, Peκ should be within the range [O(102), O(104)] in this work. 
To substantiate this theoretical limit, two extreme cases with Peκ = 50 and Peκ = 20000 are 
run. The results agree well with the theoretical prediction (Figure 6): if Peκ is too small, 
diffusion overwhelms convection, thereby stalling the spreading process (Figure 6a). By 
contrast, when Peκ exceeds the upper limit, diffusion is damped by convection, the 
interface profile near the contact lines is noticeably deformed by the strong flows there 
(Figure 6b). In this way, Peκ = 1000 is selected as an appropriate value. 

 

Figure 6: Numerical Simulations with two extreme Peclet numbers: (a) Peκ = 50; 
(b) Peκ = 20000, where the two contour lines denote C = −0.9 and C = 0.9 respectively. In 
both cases we use Re = 1.0, Ca = 1.0, Cn = 0.01, B/A = 1.0, θ0 = 155°, θe = 90°. 
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Within the verified theoretical range, we carry out a sensitivity study on the influence of 
Peκ in the spreading behavior, see Figure 7. Here we investigate the spreading behavior 
by examining the temporal evolution of the droplet’s base radius at the solid wall. It is 
found that as Peκ decreases, the base radius is changing faster which indicates a more 
rapid spreading of the droplet. This can be rationalized by the fact that the motion of 
contact lines is supported by the diffusion process. A stronger diffusion by setting a 
smaller Peκ drives a higher moving speed of the contact lines and thus a faster 
spreading of the droplet. 

 

Figure 7: Temporal evolution of the droplet’s base radius for different values of Peκ and 
Re = 1.0, Ca = 1.0, Cn = 0.01, B/A  = 1.0, θ0 = 155°, θe = 90°. 

3.4. Effects of ambient fluid viscosity and substrate wettability on spreading behavior 

With the implemented method, we investigate the effects of the ambient fluid viscosity 
and of the surface substrate wettability on the spreading rate, respectively.  

First we perform the viscosity study by decreasing the viscosity ratio B/A from 1 to 0.5 
and 0.25, where μA is the viscosity of the droplet and μB that of the ambient fluid. Since 
the viscosity of the droplet is fixed, the viscosity of the ambient fluid is getting smaller 
equivalently. As shown in Figure 8, a smaller viscosity of the ambient fluid leads to a 
faster spreading of the droplet. This trend is also reported in literature (e.g. [23]). This 
phenomenon is valid in terms of the hydrodynamics theory that as the ambient fluid is 
getting less viscous, its viscous resistance on the droplet spreading is reduced and thus 
the spreading is accelerated. 
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Figure 8: Temporal evolution of the droplet’s base radius for different viscosity ratios 
and Re = 1.0, Ca = 1.0, Cn = 0.01, Peκ = 1000, θ0 = 155°, θe = 90°. 

The effect of substrate wettability is studied by using other two equilibrium contact 
angles (θe = 60° and θe = 120°) according to the boundary condition Eq. (14). As Figure 9a 
shows, all the simulations predict accurately the final equilibrium contact angles. Looking 
at Figure 9b, we find that the spreading behavior is very sensitive to the substrate 
wettability from the very beginning. This finding agrees well with that reported in [22]. 

 

Figure 9: Temporal evolution of the apparent contact angle (a) and base radius (b) for 
different values of θe and Re = 1.0, Ca = 1.0, Peκ = 1000, Cn = 0.01, B/A  = 1.0, θ0 = 155°. 
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4 Conclusions and future work 

In this work a phase field method is implemented in OpenFOAM®. The method is 
carefully verified and validated by several test problems. The influence of various 
numerical parameters is investigated and the following conclusions can be drawn: 

1. The computed one-dimensional profile of the order parameter in the interfacial 
region is in good agreement with the analytical solution supposed the interface 
thickness is resolved by at least four mesh cells. 

2. For two-dimensional problems, the shift in the order parameter is negligible 
supposed the value of the Cahn number is below about 0.01. 

3. The phase field method can reliably predict the deformation of a droplet in a shear 
flow which serves as validation for the surface tension force. 

4. The method can successfully compute the spreading of a droplet on a solid surface 
driven by a mismatch between the initial contact angle and the specified equilibrium 
contact angle toward the steady state. The temporal evolution of this process slightly 
depends on the Peclet number. For the latter a suitable range has been identified. 

As the next step we will further validate the method by comparing the predicted temporal 
evolution of base radius and contact angle using adaptive grids with experimental data. 
Up to now, we have investigated capillarity-driven spreading on ideally flat horizontal 
surfaces. In future we will also study spreading behavior driven by gravitational force by 
taking into account density difference between the two phases on inclined surfaces. The 
ultimate goal is to investigate spreading processes in more complex geometries as 
existing in solid sponges which are innovative chemical reactors. 
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