

Separate-effects tests on air ingress in the framework of SFP and KIT activities

Martin Steinbrück Karlsruhe Institute of Technology, Institute for Applied Materials, Germany SFP Project Seminar 2013, OECD Conference Center, Paris, France, 22-23 October 2013

Institute for Applied Materials IAM-AWP & Program NUKLEAR

Outline

Some words about air oxidation, especially the role of nitrogen

SFP related work

- Comparison of high-temperature oxidation of Zircaloy-2 and Zircaloy-4
- Experimental pre- and post-test simulation of oxidation during SFP phases I&II (pre-ignition and ignition)

Experimental

- Most tests were conducted in a NETZSCH STA409 coupled with gas supply and mass spectrometer; some in horizontal tube furnace with air lock
- Typical temperature range: 600-1600°C
- Zr alloys: Zry-4, Zry-2 (Duplex DX-D4, M5[®], E110, Zirlo[™])
- Atmospheres: steam, oxygen, air, nitrogen, mixtures of these
- Mostly isothermal tests, some transient experiments

Oxidation in atmospheres containing nitrogen

- Air ingress reactor core, spent fuel pond, or transportation cask
- Nitrogen in BWR containments (inertization) and ECCS pressurizers
- Prototypically following steam oxidation and mixed with steam

Consequences:

- <u>Significant heat release</u> causing temperature runaway from lower temperatures than in steam
- <u>Strong degradation of cladding</u> causing early loss of barrier effect
- <u>High oxygen activity</u> influencing FP chemistry and transport

Spent fuel storage pool accident

Reaction of Zircaloy-4 in N₂-O₂ mixtures

 Strong effect of nitrogen on oxidation kinetics of Zry-4 in N₂-O₂ mixtures over a wide range of composition

0% N₂

20 µm

Consequences of air ingress for cladding

1 hour at 1200°C in steam

1 hour at 1200°C in air

Loss of barrier effect of cladding

SFP Project Seminar 2013

Mechanism of air oxidation

- Diffusion of air through imperfections in the oxide scale to the metal/oxide interface
- Consumption of oxygen
- Remaining nitrogen reacts with zirconium and forms ZrN
- ZrN is re-oxidized by fresh air with progressing reaction associated with a volume increase by 48%
- Formation of porous and nonprotective oxide scales

- 1 initially formed dense oxide ZrO_2
- 2- porous oxide after oxidation of ZrN
- $3 ZrO_2 / ZrN$ mixture
- 4α -Zr(O)

Reaction of ZrO_x with nitrogen

Fast reaction of α-Zr(O) with nitrogen with linear kinetics

8

Influence of pre-oxidation (PO) in steam on subsequent reaction in air and nitrogen

Protective effect of PO on subsequent oxidation in air as long as oxide scale is intact

200 µm

Accelerating effect of PO on subsequent reaction in nitrogen

Oxidation in mixed steam-air atmospheres

Zry-4, 1 hour at 1200°C

Increasing degradation with raising content of air in the mixture

Oxidation in mixed atmospheres

1 hour at 1000 °C in steam

1 hour at 1000 °C in 50/50 steam/N₂

- Strong effect of nitrogen on oxidation and degradation
- Nitrogen acts like a catalyst (NOT like an inert gas)
- Enhanced hydrogen source term by oxidation in mixtures containing nitrogen

SFP related activities

- Proof of the similarity of high-temperature oxidation and mechanical properties of Zircaloy-2 (BWR) and Zircaloy-4 (PWR)
- Investigation of the influence of the swage-down process during manufacturing of the Zircaloy-2 heater rods
- Simulation of pre-ignition and ignition phases of SFP I&II
- Report distributed Nov 2010

Composition of Zircaloy-2 and Zircaloy-4

TECHNICAL DATA SHEET

COMPOSITION (WEIGHT PERCENT)

MAXIMUM IMPURITIES, WEIGHT %

Name	Zircaloy-2	Zircaloy-4	
UNS Grade	R60802	R60804	
Tin	1.20-1.70	1.20-1.70	
Iron	0.07-0.20	0.18-0.24	
Chromium	0.05-0.15	0.07-0.13	
Nickel	0.03-0.08		
Niobium			
Oxygen	Per P.O.	Per P.O.	
Iron + Chromium + Nickel	0.18-0.38		
Iron + Chromium		0.28-0.37	

Very similar composition of both alloys

Name	Zircaloy-2	Zircaloy-4	
Aluminum	0.0075	0.0075	
Boron	0.00005	0.00005	
Cadmium	0.00005	0.00005	
Carbon	0.027	0.027	
Chromium			
Cobalt	0.0020	0.0020	
Copper	0.0050	0.0050	
Hafnium	0.010	0.010	
Hydrogen	0.0025	0.0025	
Iron			
Magnesium	0.0020	0.0020	
Manganese	0.0050	0.0050	
Molybdenum	0.0050	0.0050	
Nickel		0.0070	
Nitrogen	0.0080	0.0080	
Phosphorus			
Silicon	0.0120	0.0120	
Tin			
Tungsten	0.010	0.010	
Titanium	0.0050	0.0050	
Uranium (total)	0.00035	0.00035	

Specimens

As-received Zry-2 and prototype heater rods

2-cm cladding segment for TG tests

Cross-section of as-received Zry-2 with 100 µm inner Zr liner

Oxidation in air of as-received claddings

- Positive effect of inner Zr layer (but no effect in SFP tests)
- Comparable external oxidation
- Breakaway after ca. 3 hours

Oxidation of heater rods

No effect of swage-down process on oxidation behavior of Zircaloy-2

Oxidation of reamed claddings

Mass gain during isothermal oxidation in air

Identical oxidation of Zry-2 and Zry-4 in air between 600 and 1400°C

Oxidation of Zry-4 and Zry-2 claddings

Post-test examinations (Example from 1100°C tests)

Zry-4, 15 min

Zry-2, 15 min

Zry-4, 45 min

Zry-2, 45 min

Simulation of SFP phase I pre-ignition tests

Simulation of SFP phase I ignition test

20-50 µm ZrO₂

21

Simulation of SFP phase II pre-tests; TG

Simulation of SFP phase II pre-tests; micrographs

Simulation of SFP phase II ignition test; TG

Simulation of SFP phase II ignition test; micrographs

25

Conclusions

- Nitrogen strongly affects oxidation kinetics by the (temporary) formation of ZrN
- Very similar oxidation behavior of the two alloys Zircaloy-2 and Zircaloy-4 and hence no concern regarding use of Zircaloy-2 for PWR tests
- No effect of swage-down process on oxidation
- Only very low oxidation (2 and 5 μm, respectively) of cladding during <u>pre-ignition tests</u>
- During <u>main tests</u> about 20-30 μm ZrO₂/ZrN were formed in the center bundle before ignition started

- The financial support of this work by the SFP program is acknowledged
- Next QUENCH Workshop:
 - Nov 19-21, 2013
 - KIT, Karlsruhe, Germany
 - quench.forschung.kit.edu

Thank you for your attention!

Separate-effects tests on air ingress in the framework of SFP and KIT activities

Martin Steinbrück Karlsruhe Institute of Technology, Institute for Applied Materials, Germany SFP Project Seminar 2013, OECD Conference Center, Paris, France, 22-23 October 2013

Institute for Applied Materials IAM-AWP & Program NUKLEAR

Phase diagram Zr - O

