

Experimental program QUENCH at KIT on core degradation during reflooding under LOCA conditions and in the early phase of a severe accident

J. Stuckert, M. Steinbrueck, M. Grosse

IAEA TM on DBA and SA

Institute for Applied Materials, IAM-WPT, IAM-AWP; Program NUKLEAR

Investigations to core degradation:

TMI-2-Accident is CORA

28 March 1979: 50% reactor core fragmented or melted, H₂ generation

1986 - 1993, 19 Tests: Investigation of melt formation and -relocation

1997 \rightarrow now, 17 Tests: Hydrogen source term, Material behaviour

CORA test matrix: 19 bundle tests

Test	Data of Toot	Max Cladding	Absorber	Other Test Canditions	Karlsruhe Institute of Technology
No.	Date of Test	Temperature	Material	Other Test Conditions	PWR
2	Aug. 6,1987	≈ 2000°C		U0 ₂ refer. Inconel spacer	heated rod
3	Dec. 3,1987	≈ 2400°C		U0 ₂ refer. high temperature	
5	Feb. 26,1988	≈ 2000°C	AgInCd	PWR-absorber	Shroud
12	June 9,1988	≈ 2000°C	AgInCd	quenching	+ shroud insulation
16	Nov. 14,1988	≈ 2000°C	B ₄ C	BWR-absorber	11 Tests
15	March 2, 1989	≈ 2000°C	AgInCd	rods with internal pressure	
17	June 29,1989	≈ 2000°C	B ₄ C	quenching	BWR
9	Nov. 9,1989	≈ 2000°C	AgInCd	10 bar system pressure	ss-blade
7	Feb. 22, 1990	< 2000°C	AgInCd	57-rod bundle, slow cooling	B4C absorber rod
18	June 21, 1990	< 2000°C	B ₄ C	59-rod bundle, slow cooling	Zry-channel
13	Nov. 15, 1990	≈ 2200°C	AgInCd	quench initiation at higher temperature; OECD/ISP	fuel rod
29	Apr. 11, 1991	≈ 2000°C	AgInCd	pre-oxidized	
31	July 25, 1991	≈ 2000°C	B ₄ C	slow initial heat-up (≈ 0.3 K/s)	6 Tests
30	Oct. 30, 1991	≈ 2000°C	AgInCd	slow initial heat-up (≈ 0.2 K/s)	
28	Feb. 25, 1992	≈ 2000°C	B ₄ C	pre-oxidized	VVER-1000
10	July 16, 1992	≈ 2000°C	AgInCd	cold lower end; 2 g/s steam flow rate	heated rod
33	Oct. 1, 1992	≈ 2000°C	B ₄ C	dry core conditions, no extra steam input	Shroud
W1	Feb. 18, 1993	≈ 2000°C		WWER-test	(Zr, 1% Nb)
W2	Apr. 21, 1993	≈ 2000°C	B ₄ C	WWER-test with absorber	B4C absorber rod

2 Tests

Initial heat-up rate ≈ 1.0 K/s. Steam flow rate, PWR: 6 g/s, BWR: 2 g/s. Quench rate (from the bottom) ≈ 1 cm/s.

31.10.2013 J. Stuckert – QUENCH-programme

CORA-18: large BWR bundle

<u>874 mm</u>: remnants of B_4C -SS eutectic melt formed at T>1200°C

<u>560 mm</u>: 1) remnants of B₄C-SS eutectic melt;
2) strong degraded fuel rods (U-Zr-SS-O melt)

IAM Institute for Applied Materials

Hydrogen production during CORA tests without/with reflood (quenching)

Experiments on reflood

Motivation

- Reflood is a prime accident management measure to terminate a nuclear accident
- Reflood may cause temperature excursion connected with increased hydrogen and FP release
- Simulation of core behaviour at high temperatures and during quenching is still a matter of improvement
- QUENCH <u>experiments</u> (bundle+SET) provide data for development of <u>models</u> and validation of SFD <u>code systems</u>

QUENCH Programme

Bundle experiments

Composition of bundles

Institute for Applied Materials

QUENCH test matrix: different test series

Test	Quench medium / Injection rate	Temp. at onset of flooding	Max. ZrO ₂ before transient	Max. ZrO ₂ before flooding	Max. ZrO ₂ after test	H ₂ production before / during cooldown	Remarks, objectives
QUENCH-00 Oct. 9 - 16, 97	Water 80 g/s	≈ 1800 K			completely oxidized		commissioning test
QUENCH-01 February 26, 98	Water 52 g/s	≈ 1830 K	312 µm		500 µm at 913 mm	36 / 3	pre-oxidized cladding
QUENCH-02 July 7, 98	Water 47 g/s	≈ 2400 K			completely oxidized	20 / <mark>140</mark>	no additional pre-oxidation, melt
QUENCH-03 January 20, 99	Water 40 g/s	≈ 2350 K			completely oxidized	18 / <mark>120</mark>	no additional pre-oxidation, melt
QUENCH-04 June 30, 99	Steam 50 g/s	≈ 2160 K	82 µm		280 µm	10/2	slightly pre-oxidized cladding
QUENCH-05 March 29, 2000	Steam 48 g/s	≈ 2020 K	160 µm		≈ 420 µm	25 / 2	pre-oxidized cladding
QUENCH-06 Dec. 13 2000	Water 42 g/s	≈ 2060 K	207 µm	300 µm	≈ 630 µm	32 / 4	OECD-ISP 45
QUENCH-07 July 25, 2001	Steam 15 g/s	≈ 2100 K	230 µm		completely oxidized	66 / <mark>120</mark>	B ₄ C, eutectic melt
QUENCH-09 July 3, 2002	Steam 49 g/s	≈ 2100 K			completely oxidized	60 / <mark>400</mark>	B ₄ C, eutectic melt
QUENCH-08 July 24, 2003	Steam 15 g/s	≈ 2090 K	274 µm		completely oxidized	46 / <mark>38</mark>	reference for QUENCH-07, melt
QUENCH-10 July 21, 2004	Water 50 g/s	≈ 2200 K	514 µm	613 μm (at 850 mm)	completely oxidized	48 / 5	air ingress
QUENCH-11 Dec 08, 2005	Water 18 g/s	≈ 2040 K		170 µm	completely oxidized	9 / <mark>132</mark>	boil-off, melt; benchmark
QUENCH-12 Sept 27, 2006	Water 48 g/s	≈ 2100 K	160 μm, breakaway	300 μm, breakaway	completely oxidized	34 / <mark>24</mark>	VVER, melt
QUENCH-13 Nov. 7, 2007	Water 52 g/s	≈ 1820 K		400 µm	750 µm	42 / 1	Ag/In/Cd (aerosol)
QUENCH-14 Sept 27, 2006	Water 41 g/s	≈ 2100 K	170 µm	470 µm	900 µm	34 / 6	M5 [®] cladding
QUENCH-15 Nov. 7, 2007	Water 41 g/s	≈ 2100 K	145 µm	320 µm	620 µm	41 / 7	ZIRLO TM cladding
QUENCH-16 July 27, 2012	Water 50 g/s	≈ 1870 K	135 µm	140 µm	850 µm: outer porous, inner dense	16 / 128	air ingress, melt; benchmark
QUENCH-17 Jan. 31, 2013	Water 10 g/s	≈ 1800 K		completely oxidized	completely oxidized	110 / <mark>1</mark>	DEBRIS formation

Т

Quenching with emergency cooling water

Crack development in the cladding, cooled down with steam. Crack density ~ 4 cm/cm²

Negligible oxidation of crack edges gives <u>only some percent</u> of generated hydrogen

Weakening of protective oxide layer by breakaway oxidation: QUENCH-12 (VVER, old E110) vs. QUENCH-06 (Zry-4)

Q12: rubble on spacer grid consists of spalled cladding scales and fragments of partially oxidized cladding

Q12 cladding: spalling of oxide scales due to breakaway effect

31.10.2013 J. Stuckert – QUENCH-programme

IAEA TM on DBA and SA

β-Zr

Q06 oxidized cladding

14/27

Increased hydrogen production during reflood after breakaway: QUENCH-12 (old E110) vs. QUENCH-14 (M5)

Consequences of breakaway enhanced hydrogen release: 1) new metallic surfaces, 2) melt release outside cladding, 3) release of hydrogen absorbed in metal.

Post-test calculations: need for improvement of model for quench phase

Influence of pre-reflood steam starvation conditions

Oxidation of Zircaloy-4 in O₂, N₂, and air /thermogravimetric measurements/

Significant nitride formation in air but not in pure nitrogen

Air ingress after strong cladding pre-oxidation (QUENCH-10): local nitride formation with formation of reoxidised "pockets" during reflood

pre-oxidation: thick ZrO₂

post-air-ingress: nitrided "pockets"

post-reflood: re-oxidised "pockets"

Air ingress after moderate pre-oxidation (QUENCH-16): massive nitride formation with their intensive re-oxidation during quench

nitride formation inside oxide layer

post-reflood

Endoscope observation at ~850 mm

prior nitrided scale *re-oxidised* during quench and spalled

thick internal ZrO₂ sub-layer ----> growing during flooding

Typical layer structure of strong oxidised cladding at hottest bundle elevation of 1000 mm after reflood

20/27

IAEA TM on DBA and SA

Eutectic melt induced upper 1200°C by absorber rod: complementary tests Q-07 (B₄C rod) and Q-08 (without absorber)

QUENCH-07: formation of significant melt amount and melt relocation B₄C<->Fe eutectic at ~1150°C Zry <-> SS eutectic at ~1300°C

QUENCH-08: moderate melt formation; no noticeable melt relocation

hydrogen productions for different test phases with indication of temperature evolution during the phase:

QUENCH-11, elev. 837 mm: melt relocated outside fuel rods and oxidised in steam

Hydrogen release with (Q-02, Q-11) and without (Q-14) melt oxidation in steam

SUMMARY of the QUENCH program

Six parameters, enhancing hydrogen production, have been identified:

- Low reflood flow rates < 1 g/s/rod (QUENCH-07, -08, -11)
- Breakaway effect with weakness and spallation of protective oxide layer (QUENCH-12)
- Steam starvation (QUENCH-09)
- Nitride formation by air ingress with formation of very porous oxide layer during following reflood (QUENCH-10, -16)
- High temperatures with melt relocation outside claddings and intensive melt oxidation (QUENCH-02, -03, -11)
- Eutectic interactions between B_4C , stainless steel and Zircaloy-4 leading to low melting point (QUENCH-07, -09)

QUENCH-LOCA program at KIT (2010-2015): Influence of hydrogen uptake after LOCA-burst on mechanical properties of claddings

secondary hydriding

ballooning and burst of claddings in comparison to pre-test fuel rod positions in the QUENCH-LOCA bundle

axial burst positions after bundle QUENCH-LOCA test with Zry-4 claddings

hydrogen bands inside cladding detected with n⁰radiography: max 2500 wppm hydrogen content

double rupture of cladding along hydrogen bands during tensile tests (UTS R_m ≈ 300 MPa)

Outlook: Four bundle tests with non- and pre-hydrogenated M5[®] and ZIRLO[™] claddings will be performed up to 2015

Thank you for your attention

http://www.iam.kit.edu/wpt/english/471.php/

http://quench.forschung.kit.edu/

