





### Coupled Simulation of Groundwater-Soil-Atmosphere Interaction for the TERENO Pre-Alpine Region (Topic 4)

#### Benjamin Fersch, S. Wagner, M. Mauder, H. Kunstmann

Reklim Workshop, Bad Honnef, 16.-18. April 2013



Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany



KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

#### **Motivation**

![](_page_1_Picture_1.jpeg)

Closed expression of the regional water balance in dynamic model system

- Regional atmospheric modeling studies focus usually on the prediction of temperature and precipitation
- Coupling to hydrological models is typically realized in a one way mode and by using bias correction
- Such approaches violate the closure of the water balance of the full system from the subsurface via the surface to the atmosphere

![](_page_1_Picture_6.jpeg)

![](_page_1_Picture_7.jpeg)

#### **Motivation**

![](_page_2_Picture_1.jpeg)

Towards fully coupled cross-compartment hydrological-atmospheric model systems

Consider effects of lateral redistribution of surface water

- Reinfiltration
- Runoff routing

Account for subsurface processes of the vadose and the phreatic zone

- Percolation to the groundwater
- Capillary rise to root layers
- Horizontal transport

Provide feedback capability from the subsurface via the surface to the atmospheric model and vice versa

![](_page_2_Picture_11.jpeg)

![](_page_2_Picture_12.jpeg)

#### **Coupled Atmosphere-Hydrology Model System**

![](_page_3_Picture_1.jpeg)

![](_page_3_Picture_2.jpeg)

![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_4.jpeg)

#### **Coupled Atmosphere-Hydrology Model Systems**

![](_page_4_Picture_1.jpeg)

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

#### **Coupled Atmosphere-Hydrology Model Systems**

![](_page_5_Picture_1.jpeg)

KIT-Campus Alpin

IFK IRU: Admospheric Environmental

![](_page_5_Figure_2.jpeg)

![](_page_5_Picture_3.jpeg)

### Common Land-Surface-Description in Regional Atmospheric Models

![](_page_6_Picture_1.jpeg)

Standard column approach in LSMs

- Only vertical transport of moisture and energy is considered
- Infiltration excess and bottom drainage terms act as sink term with no possibility of returning
  - Lower model boundary is defined by a downward gravitation driven flux

![](_page_6_Figure_6.jpeg)

(Unified Noah / OSU Land Surface Model © NCAR)

![](_page_6_Picture_8.jpeg)

![](_page_6_Picture_9.jpeg)

### Common Land-Surface-Description in Regional Atmospheric Models

![](_page_7_Picture_1.jpeg)

Standard column approach in LSMs

- No lateral redistribution of surface and subsurface water in the LSM
- No interaction between unsaturated and saturated zone
  - Mutual non-linear interaction of a closed water cycle cannot emerge

![](_page_7_Figure_6.jpeg)

(Unified Noah / OSU Land Surface Model © NCAR)

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

#### Coupled atmosphere-hydrology model systems

![](_page_8_Picture_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

#### **Groundwater Coupling Approach**

![](_page_9_Picture_1.jpeg)

Approach 1: Richard's equation with fixed-head boundary condition (based on Zeng et al. (2009), De Rooij (2010)

- Free drainage boundary condition of the LSM is replaced by bottom boundary condition which assumes an equilibrium soil moisture distribution of the deep unsaturated zone
- The new bottom boundary condition is calculated by specifying the hydraulic head at the bottom of the LSM
- New boundary condition realized with additional layer below the bottom of the Noahl-LSM
- Soil moisture content of additional layer depends on the distance to the hydraulic head
  - fully saturated, hydraulic head above or equal layer
  - partly saturated, hydraulic head within layer
  - unsaturated, hydraulic head below layer

![](_page_9_Figure_10.jpeg)

![](_page_9_Picture_11.jpeg)

#### **Groundwater Coupling Approach**

![](_page_10_Picture_1.jpeg)

- Approach 2: Darcy flux boundary condition (based on Bogaart et al. 2008)
  - Assumes a quasi steady-state moisture profile between groundwater head and the lowest soil layer of the LSM
  - Darcy equation is used to describe flow through this transition zone depending on the relative saturation at the bottom of the LSM and on the thickness of the transition zone
  - Parametrization that approximates net Darcy flux  $q_{darcy}$  for different thicknesses of the transition zone and different values of saturation for the lowest LSM soil layer
  - Approximation available for the 12 soil classes of Clapp & Hornberger (1978)

![](_page_10_Figure_7.jpeg)

![](_page_10_Figure_8.jpeg)

![](_page_10_Picture_9.jpeg)

![](_page_10_Picture_10.jpeg)

# Proof of Concept – 1D Groundwater Coupling Study with the Noah-LSM and TERENO DATA

![](_page_11_Picture_1.jpeg)

- The validity of the coupling approaches can hardly be analyzed in a distributed (2D) application
- 1D stand-alone study is performed for a well measured site of the terrestrial environmental observatory (TERENO) pre-alpine

![](_page_11_Figure_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

#### **Data at TERENO Climate Station Graswang**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

#### **Data Source: TERENO Site Graswang**

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

### Data Source: Groundwater Head Time-Series from the Local Water Authority (WWA Weilheim)

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

# Data Source: Groundwater Head Time-Series from the Local Water Authority (WWA Weilheim)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

#### **Configuration Noah-LSM for 1D Study**

![](_page_16_Picture_1.jpeg)

- Noah-LSM 1D, simple-driver, V.3.3
- Simulation period: 2010-07-01 to 2011-12-31 (half year of spin-up)
- Simulation time-step: 10 minutes
- Soil-type 4, silt loam
- Vegetation / land-use: grassland (USGS 7, modified)
- Monthly update of albedo, LAI, vegetation fraction, and roughness length
- 4 soil layers, 0-10, 10-40, 40-100, 100-200 cm (standard setup)
- Modes: Uncoupled, fixed-head-boundary and darcy-flux coupling with time-variant and constant (-7m) groundwater head

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

#### **Impact of Coupling on Soil Moisture Dynamics**

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

#### Impact of GW-Coupling on Evapotranspiration

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

#### **Daily Bias of Evapotranspiration**

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

#### ETa, Comparison Static vs. Variable GW - Head

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

### **Impact of GW-Coupling on Infiltration Excess**

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

#### **Distributed Model Systems WRF-Hydro & WRF-HMS**

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

Distributed Application, HMS-WRF, Poyang Lake Region, China

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

poyang\_EVAP\_DS\_mm\_M0\_EVAP\_DS\_mm\_M4\_EVAP\_yearsum\_ymonmean\_mrf.eps

Difference in potential evaporation for groundwater coupled HMS-WRF simulation.

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

#### **Summary & Conclusion**

![](_page_24_Picture_1.jpeg)

Lower boundary condition for LSM Richard's equation important for simulation of near-surface soil moisture field

For 1D column study with TERENO input data, improvement of soil moisture states of the upper LSM soil levels

![](_page_24_Picture_4.jpeg)

Groundwater coupling impacts also evapotranspiration and surface runoff with considerable amounts

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

#### Outlook

![](_page_25_Picture_1.jpeg)

Additional comparison of 1D Study for other TERENO sites throughout Germany (but groundwater is not monitored for most of the observatories)

Application of a groundwater enabled version of the model system WRF-Hydro for the Ammer catchment (incl. 2D groundwater model)

Distributed application requires distributed hydrogeological information about saturated conductivity, porosity, and thickness for aquifers → approximation strategy

Validation of coupled simulations with respect to soil moisture patterns (sensor networks, ACROSS, remote sensing products)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

KIT-Campus Alpin

![](_page_26_Picture_3.jpeg)