

Generation of pin level multi-dimensional XS tables with Serpent 2

M. Daeubler

Institute for Neutron Physics and Reactor Technology (INR) Reactor Physics and Dynamic Group (RPD)

0000000(000)00000()0000000(00()000000000000 000000000 00000000()00000000()0000 00()0000000000000()00

- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook

Karlsruher Institut für Technologie

Agenda

- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook

Pin power reconstruction with Serpent 2

• Employing pin powers \rightarrow cpd card

$$p_{pin,i} = \kappa \, \Sigma_f \, \overline{\Phi} \, f_i$$

Employing group-wise form functions → new ppw card

$$p_{pin,i} = \sum_{g} \overline{\kappa} \, \overline{\Sigma_{fg}} \, \overline{\Phi_g} \, f_{g,i}$$

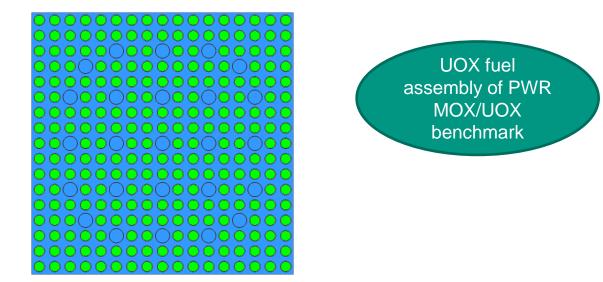
PPW card syntax: set ppw <universe> <lattice>

Serpent 2 support in GenPMAXS

- Verification cases to be done with U.S. NRC reactor simulator PARCS v3.0
- GenPMAXS tool to generate PMAX-type multi-dimensional cross section tables for PARCS
- Extension of GenPMAXS to support Serpent 2 (based on partial Serpent 1 support)
- GenPMAXS Serpent 2 features:
 - general nodal few-group constants,
 - group-wise form functions,
 - reflector ADF and
 - 1D interface discontinuity factors
- Serpent 2 support should be available through U.S. NRC CAMP program starting with GenPMAXS v6.2 release

Pin power reconstruction

- Using Serpent 2 for pin power reconstruction constant generation
- Serpent 2 support in GenPMAXS
- Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook



Pin power reconstruction – HZP case 1 (1/3)

Serpent 2:

100,000,000 histories in 500 active cycles 2g cross sections (0.625 eV boundary)

UOX 0.15 GWd/tU

Code	k _{inf}	Rel. Diff. [pcm]
Serpent 2 CE	1.124230±0.00005	-
PARCS 2g NEM	1.1242304	0.04

Pin power reconstruction – HZP case 1 (2/3)

10.0	2.2	0.4	-0.5	-0.7	-0.9	-1.0	-1.0	-0.9	-1.0	-1.0	-0.7	-0.8	-0.5	0.3	2.2	9.9
2.3	0.9	-0.2	-0.5	-1.2	1.0	-1.5	-1.3	0.9	-1.3	-1.3	1.1	-1.2	-0.5	-0.1	0.8	2.1
0.3	-0.1	-0.8	1.2	0.6	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.7	1.2	-0.9	-0.1	0.3
-0.4	-0.5	1.3	0.0	0.5	1.0	-1.5	-1.5	1.0	-1.4	-1.4	0.9	0.5	0.0	1.2	-0.5	-0.5
-0.7	-1.2	0.7	0.4	-1.9	0.9	-1.5	-1.4	1.0	-1.5	-1.5	0.8	-1.8	0.3	0.6	-1.2	-0.7
-0.8	1.0	0.0	1.0	0.9	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.8	0.9	0.0	0.9	-0.8
-0.9	-1.3	0.9	-1.5	-1.5	1.0	-1.5	-1.4	1.1	-1.3	-1.5	1.0	-1.6	-1.5	1.0	-1.4	-0.9
-1.0	-1.3	1.1	-1.4	-1.5	1.0	-1.3	-1.4	1.1	-1.3	-1.4	1.0	-1.5	-1.5	1.0	-1.4	-0.9
-0.8	0.9	0.0	1.0	1.0	0.0	1.1	1.1	0.0	1.0	1.1	0.0	1.0	0.9	0.0	1.1	-0.8
-1.0	-1.3	1.0	-1.4	-1.4	0.9	-1.3	-1.4	1.1	-1.3	-1.4	1.0	-1.5	-1.5	1.0	-1.3	-1.0
-1.0	-1.3	0.9	-1.4	-1.4	0.9	-1.5	-1.4	1.0	-1.4	-1.4	0.9	-1.5	-1.5	1.0	-1.3	-1.1
-0.8	0.9	0.0	1.0	0.9	0.0	0.8	1.1	0.0	1.0	0.9	0.0	0.9	1.0	0.0	1.0	-0.8
-0.7	-1.2	0.7	0.4	-1.8	0.9	-1.5	-1.4	1.0	-1.4	-1.5	0.9	-1.8	0.5	0.5	-1.1	-0.7
-0.4	-0.4	1.2	0.0	0.5	1.0	-1.4	-1.5	1.0	-1.4	-1.6	0.9	0.4	0.0	1.2	-0.6	-0.4
0.3	-0.1	-0.8	1.2	0.7	0.0	1.0	1.0	0.0	1.1	1.1	0.0	0.6	1.2	-0.8	-0.1	0.4
2.3	0.9	-0.1	-0.5	-1.1	1.0	-1.3	-1.2	1.0	-1.3	-1.3	1.0	-1.1	-0.5	-0.1	0.9	2.2
10.0	2.3	0.3	-0.5	-0.8	-0.7	-1.0	-1.0	-0.8	-0.9	-0.9	-0.8	-0.6	-0.5	0.3	2.3	10.0

Relative pin power errors PARCS vs. Serpent 2 in per cent

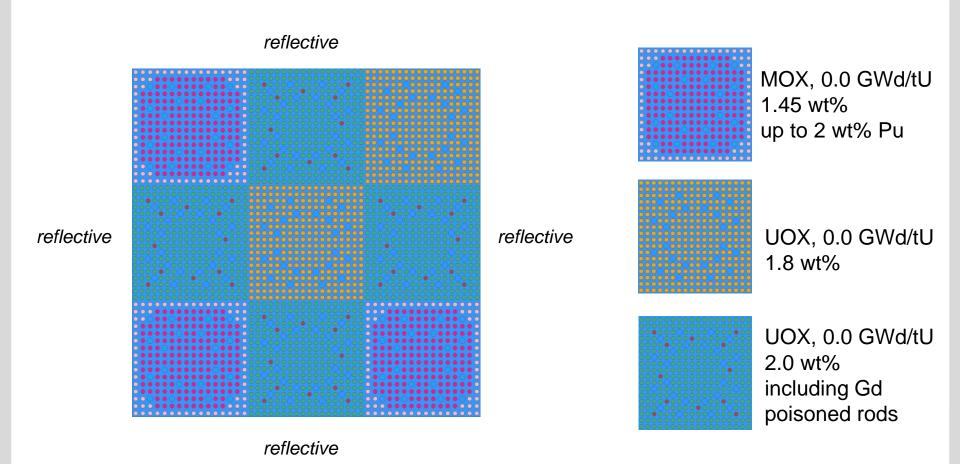
PARCS pin power reconstruction relationship for pin cell i:

$$p_{pin,i} = \sum_{g} \overline{\kappa} \, \overline{\Sigma_{fg}} \, \overline{\Phi_g} \, f_{g,i}$$
$$\Phi_{g,i}$$

Serpent 2 pin power relationship for pin cell i:

$$p_{pin,i} = \sum_{g} \kappa_{i} \Sigma_{fg,i} \Phi_{g,i}$$
$$= \kappa_{i} \Sigma_{f,i} \Phi_{i}$$

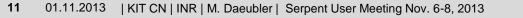
Pin power reconstruction – HZP case 1 (3/3)


5.53	1.52	0.52	-0.07	-0.25	-0.38	-0.51	-0.48	-0.54	-0.49	-0.53	-0.20	-0.30	-0.03	0.43	1.37	5.39
1.49	0.78	0.12	0.00	-0.55	0.54	-0.90	-0.65	0.52	-0.66	-0.73	0.74	-0.43	-0.18	0.12	0.73	1.35
0.42	0.25	-0.21	0.83	0.36	0.00	0.60	0.40	0.00	0.52	0.54	0.00	0.48	0.74	-0.25	0.24	0.49
0.06	-0.10	0.84	0.00	0.31	0.52	-0.89	-0.95	0.38	-0.95	-0.87	0.41	0.25	0.00	0.80	-0.10	-0.04
-0.21	-0.43	0.47	0.12	-1.07	0.33	-1.00	-0.86	0.27	-1.05	-1.09	0.40	-1.02	0.07	0.34	-0.55	-0.15
-0.26	0.68	0.00	0.45	0.34	0.00	0.31	0.20	0.00	0.25	0.29	0.00	0.26	0.39	0.00	0.55	-0.30
-0.40	-0.48	0.33	-0.93	-1.05	0.24	-1.07	-1.15	0.20	-1.03	-1.18	0.31	-1.09	-0.88	0.46	-0.82	-0.41
-0.41	-0.68	0.59	-0.88	-1.03	0.23	-0.92	-1.12	0.22	-1.03	-1.05	0.14	-1.01	-0.95	0.47	-0.87	-0.38
-0.31	0.52	0.00	0.36	0.38	0.00	0.20	0.13	0.00	0.19	0.30	0.00	0.19	0.26	0.00	0.58	-0.51
-0.46	-0.69	0.47	-0.83	-0.88	0.21	-1.10	-1.11	0.26	-1.07	-1.09	0.25	-1.08	-0.93	0.44	-0.70	-0.53
-0.43	-0.57	0.47	-0.83	-0.83	0.23	-0.99	-1.01	0.17	-1.07	-1.08	0.24	-1.00	-0.82	0.53	-0.72	-0.65
-0.33	0.39	0.00	0.58	0.45	0.00	0.18	0.38	0.00	0.27	0.26	0.00	0.35	0.56	0.00	0.62	-0.31
-0.18	-0.49	0.48	0.20	-1.04	0.42	-0.91	-0.99	0.42	-0.93	-0.97	0.36	-1.08	0.31	0.38	-0.49	-0.22
0.06	0.03	0.87	0.00	0.44	0.51	-0.82	-0.82	0.51	-0.86	-0.99	0.37	0.27	0.00	0.84	-0.14	0.03
0.51	0.23	-0.17	0.85	0.53	0.00	0.54	0.52	0.00	0.54	0.57	0.00	0.43	0.73	-0.18	0.19	0.51
1.54	0.78	0.18	0.02	-0.39	0.67	-0.65	-0.56	0.51	-0.66	-0.58	0.64	-0.45	-0.06	0.22	0.80	1.46
5.62	1.58	0.45	0.03	-0.31	-0.26	-0.48	-0.49	-0.30	-0.43	-0.31	-0.35	-0.14	-0.06	0.40	1.51	5.52

Relative pin power errors Serpent 2 PPR vs. Serpent 2 in per cent

Pin power reconstruction – HZP case 2 (1/3)

Fuel assemblies design based on AREVA fuel for KONVOI PWR


Pin power reconstruction – HZP case 2 (2/3)

Serpent 2: 2E+9 histories in 500 active cycles
 2g cross sections (0.625 eV boundary)

Code			k _{inf}		Rel	. Diff. [pcm]
Serpent 2 CE		0.961	211±0.000	003		-
PARCS 2g NE	ΕM	C	.960741	47.0		
		1.5441 1.5386 -0.36	0.5843 0.5904 1.04	0.42 0.43 2. 4	326	
Serpent 2 CE PARCS 2g Rel. Diff. [%]	().8849).8845 -0.04	0.7056 <i>0.7123</i> 0.96	0.58 <i>0.5</i> 9 1.0	904	
	000	1.8449 1.8281 -0.91	0.8848 <i>0.8845</i> -0.04	1.54 1.54 -0.	386	

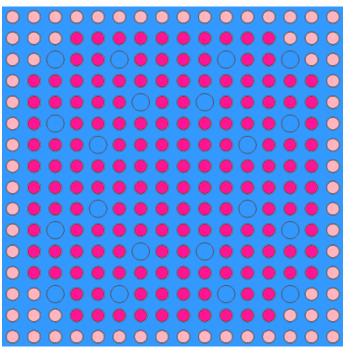
Normalized nodal powers as predicted by Serpent 2 and PARCS

Pin power reconstruction – HZP case 2 (3/3)

000	000		000	00	00			00	00	 00	00	00	00	0.0										
														00	00									
	• •												2.	29	20								29	
												20		29	28									
			00												20	00							22	
														22	66			22					58	
														22	Бă		23	20					22	
						0		ŏě.						ăč	5ŏ								ă č	
	0.					ŏ								õē	bŏ								õč	
														60									00	
	11				Υ.																		o d	
	111													00									00	
					-									00										
000	19					10		00						06										
					0	00								00										
	000		000	00	0																			
000																00								
0.00					۲.											22			00					
				200				2													20		22	
				~					<u>Š</u> Š	ŇŇ											8.			
							20		22															•
							22			<u>××</u>		<u>y y</u>												
							22	~~		22		22	22									22		•
000							22	88	88	88		88												
000							ă ă			ŏŏ														
							ăă					ŏŏ.												•
							00																	•
				0.00																	0.0			- N
		000																						
0.000					، ک 🤇																	0		
																				00		000		
																0								
000								• •					9.0					$\odot \bullet$		•		000		
						0																		
			O			0						20												
						0																		
	0.					0																		
	A							6.0																
	1				~										2									
						•••				ò è					0									
	•																							
																0								
000	000		000	00	00										00	000	00		00	00	000	000		

23.27	6.91	6.89	5.59	4.62	3.60	2.70	3.06	3.66	3.66	3.36	2.90	3.39	4.93	5.62	6.53	6.60	6.15
6.92	6.95	5.74	4.64	4.22	2.31	0.37	2.08	3.63	3.43	2.12	0.63	2.23	4.00	5.04	6.10	6.71	6.87
7.62	6.48	4.07	1.43	2.10	-0.40	0.00	-0.63	1.91	2.29	-0.42	0.00	0.44	1.86	1.55	4.36	6.12	6.64
6.83	5.25	1.63	0.00	-0.73	-0.80	-2.42	-1.95	0.91	0.68	-1.74	-2.29	-0.04	-0.59	0.00	1.72	5.09	6.42
5.71	4.63	2.12	-0.67	-0.51	-2.41	-2.86	0.00	-0.76	-1.01	0.00	-2.75	-2.19	-0.33	-0.37	2.64	4.72	5.83
4.32	2.70	-0.05	-0.58	-2.07	0.00	-2.04	-0.77	1.51	1.20	-0.75	-1.80	0.00	-2.12	0.09	0.56	3.51	5.02
3.41	1.02	0.00	-2.39	-2.74	-2.33	0.98	2.97	3.83	3.78	2.71	1.35	-2.04	-2.29	-1.80	0.00	1.91	4.84
3.92	2.56	-0.43	-2.00	0.00	-1.17	2.42	4.04	5.22	5.13	4.47	2.76	-0.85	0.00	-1.40	0.52	3.60	5.15
4.14	3.48	1.82	0.54	-1.16	1.41	3.47	5.04	5.72	6.21	5.18	3.80	1.87	-0.59	1.22	3.32	4.93	5.95
3.80	3.44	2.07	0.28	-1.13	1.21	3.70	5.15	5.88	5.58	5.02	3.76	1.66	-0.32	1.80	3.83	5.16	6.30
3.16	2.07	-0.57	-2.22	0.00	-1.23	2.26	4.29	4.69	5.01	4.44	3.04	-0.59	0.00	0.05	2.81	4.52	5.71
2.84	0.25	0.00	-2.68	-3.10	-2.32	0.42	2.45	3.45	3.83	2.83	1.32	-1.87	-2.45	-0.10	0.00	3.32	5.25
3.44	2.45	-0.68	-0.83	-2.65	0.00	-2.67	-0.98	1.18	1.37	-1.13	-2.04	0.00	-2.11	-1.99	-0.05	1.34	4.62
5.00	3.79	1.12	-1.24	-0.88	-2.45	-3.24	0.00	-1.16	-1.17	0.00	-3.16	-2.42	-1.40	-2.21	-0.71	2.80	5.11
6.25	4.60	1.08	0.00	-1.15	-0.85	-2.56	-1.78	0.65	0.53	-2.13	-2.78	-0.66	-1.36	0.00	0.80	4.06	5.55
7.06	5.88	3.98	1.17	1.65	-0.25	0.00	-0.55	2.18	2.38	-0.54	0.00	-0.29	1.16	1.13	3.62	5.51	6.79
6.62	6.68	5.51	4.81	4.02	2.59	0.91	2.73	3.77	3.81	2.77	0.75	3.02	4.06	4.63	5.76	6.73	7.31
23.87	6.75	6.33	5.78	5.18	4.63	3.62	4.18	4.64	4.69	4.32	3.96	4.15	5.02	6.06	6.38	7.16	7.45

Relative pin power errors PARCS vs. Serpent 2 in per cent



- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook

General pin level cross section generation approach

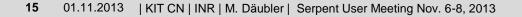
16x16-20 MOX 0.0 GWd/tU

Pin level XS in Serpent 2 have issue with kinetics parameters

- Infinite lattice calculations per pin cell type
- Few-group constants per pin cell type generated based on finite lattice calculation for fuel assembly (standard method)
- Few-group constants per pin cell type and position generated based on finite lattice calculation for fuel assembly
- Few-group constants per pin cell type and position generated together with homogenization corrections based on finite lattice calculation for fuel assembly

Production XS libraries with critical spectrum correction

Super-homogenization factors



- in case of zero currents across cell boundaries, SPH factors are the inverse of an ADF/CDF
- SPH factors are defined as for diffusion

$$u = \frac{\overline{\Phi}_{het}}{\overline{\Phi}_{hom}}$$

They have to be obtained by an iterative procedure using the lower order formulation of the homogeneous system (DYN3D, COBAYA3k), based on the following expressions

$$\begin{split} \tilde{\Sigma} &= \ \mu \ \Sigma \\ \tilde{\Sigma} \ \overline{\Phi}_{hom} &= \ \Sigma \ \overline{\Phi}_{het} \end{split}$$

GET interface discontinuity factors

 GET discontinuity factors are defined as ratio of average heterogeneous and homogeneous neutron fluxes on each surface S of a node for diffusion

$$f_{GET}^{s} = \frac{\phi_{s}^{het}}{\phi_{s}^{hom}}$$

- Heterogeneous neutron surface fluxes can be obtained from lattice calculation
- The method of obtaining the homogeneous surface fluxes depends on and has to be consistent with spatial discretization of reactor simulator used

BBH interface discontinuity factors

- BBH discontinuity factors are defined to preserve surface averaged partial currents
- Factors are applied to surface averaged partial currents, only for diffusion as the low order operator BBH factors can also be formulated in terms of surface fluxes
- BBH factors are of the generic form for diffusion:

$$f_{BBH}^{s} = 2 \frac{J_{-s}^{het} + J_{+s}^{het}}{\phi_{s}^{hom}}$$

The method of obtaining the partial currents depends on and has to be consistent with spatial discretization of reactor simulator used

COBAYA3k: Interface discontinuity factors

 COBAYA3k employs FMFD method, an exact formula to compute GET IDF can be derived

$$f = \frac{\overline{\Phi}^{s}_{het}}{\overline{\Phi}^{s}_{hom}} = \frac{\overline{\Phi}^{s}_{het}}{\overline{\Phi}_{het} - \frac{J_{het}h}{2D}}$$

 The corresponding exact formula for flux discontinuity factor form of the BBH IDF

$$f = 2 \frac{J^{+}_{het} + J^{-}_{het}}{\overline{\Phi}_{het} - \frac{J_{het}h}{2D}}$$

DYN3D: Interface discontinuity factors

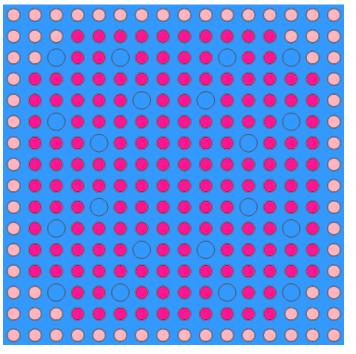
- Surface fluxes are NOT part of a NEM solution
- Expression for the transverse integrated, average neutron flux in direction u

$$\Phi_g^{\ i}(u) = \sum_{k=0}^2 c_{g,k}^{\ i,u} h_k\left(\frac{u}{a_u}\right) + d_{g,+u}^{\ i} e^{Bu} + d_{g,-u}^{\ i} e^{-Bu}$$

with node index i, polynomial basis h_k and node length in direction u a_u .

Tranverse integrated diffusion equation:

$$-D_{g}^{i} \frac{d^{2}}{du^{2}} \Phi_{g}^{i}(u) + \Sigma_{R}^{i} \Phi_{g}^{i}(u) = S_{g}(u) - L_{g}^{het}(u)$$


Boundary conditions:

$$J_g^{het,s} = -D_g^i \frac{d}{du} \Phi_g^i(u) \mid u = u_s$$

$$\overline{\Phi}_{g,het} = c_{g,0}^{i,u} + \frac{2}{B \cdot a} \sinh\left(B \cdot \frac{a}{2}\right) \left(d_{g,+u}^i + d_{g,-u}^i\right)$$

Pin level homogenization corrections with Serpent 2

16x16-20 MOX 0.0 GWd/tU SPH factors: pin cell average fluxes from group constant generation

GET and BBH IDF: net pin cell surface current

net pin cell surface currents, pin cell surface fluxes, pin cell average fluxes and pin cell surface partial currents \rightarrow ADF card

 System of Python scripts to translate Serpent models for nodal XS into different classes of pin level XS models

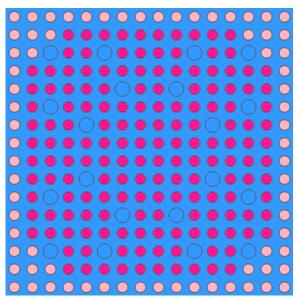
Adapted ADF card:

set adf <universe> <bc_west> <bc_south> <bc_east> <bc_north>

Serpent 2 support in createXSlib

- Verification cases to be done with reactor simulators DYN3D and COBAYA3k
- createXSlib is KIT INR inhouse tool to generate multi-dimensional NEMTAB cross sections tables for DYN3D and COBAYA3's solvers COBAYA3k and ANDES
- createXSlib Serpent 2 features:
 - General nodal and pin-by-pin few-group constants
 - Reflector ADF
 - GET and BBH IDF
 - SPH factors (DYN3D only)

- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook



Assessment of different pin level XS generation methods (1/3)

- Serpent 2: 2E+9 histories in 500 active cycles
 2g cross sections (0.625 eV boundary)
- Serpent 2 output translated with createXSlib, achievable accuracy tested with DYN3D and COBAYA3k
- XS tables generated per pin type (3M), per pin type and position (32M), per pin type and position with IDF (IDF) and per pin type and position with SPH (SPH)

16x16-20 MOX 0.0 GWd/tU

Assessment of different pin level XS generation methods (2/3)

2

	MOX FA k _{inf}	Rel. Diff. Eigenvalue [pcm]	Max. Rel. pin power error [%]
Serpent 2 CE	1.08496±0.000030	-	-
DYN3D diff (3M)	1.087627	266.7	1.22
DYN3D sp3 (3M)	1.086733	177.3	1.50
COBAYA3k diff (3M)	1.084761	19.9	1.45
DYN3D diff (32M)	1.087578	261.8	0.49
DYN3D sp3 (32M)	1.086685	172.5	0.28
COBAYA3k diff (32M)	1.084710	25.0	0.60
DYN3D diff (IDF)	1.084950	1.0	0.05
DYN3D diff (SPH)	1.084951	0.9	0.01
COBAYA3k diff (IDF)	1.084950	1.0	0.02
		Statis uncertai power 0.04	inty pin below

24 01.11.2013 | KIT CN | INR | M. Daeubler| Serpent User Meeting Nov. 6-8, 2013

Assessment of different pin level XS generation methods (3/3)

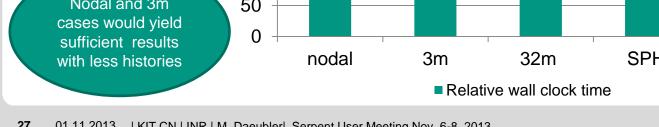
0.000	0.11.0	0.201	0.051	0.001	0.1227	0.120	01120	0.202	0.220	0.075	01012	0.270	0.000	0.200	0.050																
-0.245	-0.422	-0.888	0.083	0.210	-0.182	0.532	0.830	0.813	0.426	-0.213	0.278	0.070	-0.931	-0.484	-0.193																
-0.339	-0.941	0.000	-0.481	-0.478	0.000	-0.223	0.520	0.486	-0.307	0.000	-0.418	-0.553	0.000	-0.904	-0.398	1													_		
-0.133	0.104	-0.486	0.032	0.025	-0.630	-0.516	0.276	0.229	-0.512	-0.522	0.003	0.090	-0.532	0.168	-0.126						CELEBORA.		00000000							-0.081	
0.004	0.243	-0.436	0.098	0.036	-0.502	0.000	-0.280	-0.425	0.000	-0.576	-0.018	0.052	-0.431	0.171	0.017	1											and the second	Second Second		-0.039	
-0.115	-0.196	0.000	-0.550	-0.457	-0.053	-0.144	0.508	0.568	-0.205	0.000	-0.565	-0.560	0.000	-0.216	-0.027												1.11.10		alan siste	-0.225	
0.167	0.438	-0.282	-0.424	0.000	-0.076	0.678	1.036	1.127	0.590	-0.110	0.000	-0.393	-0.295	0.478	0.124															0.209	
0.438	0.875	0.569	0.238	-0.283	0.531	1.113	1.448	1.500	1.075	0.490	-0.296	0.296	0.571	0.739	0.322				Construction of the											0.154	
0.311	0.921	0.537	0.226	-0.349	0.472	1.128	1.342	1.381	1.062	0.527	-0.364	0.276	0.598	0.926	0.281														- Stocenerice	0.021	
0.160	0.446	-0.289	-0.447	0.000	-0.052	0.624	1.093	1.056	0.657	-0.115	0.000	-0.509	-0.382	0.598	0.151															0.129	
-0.076	-0.084	0.000	-0.566	-0.533	-0.097	-0.180	0.430	0.577	-0.166	-0.090	-0.536	-0.512	0.000	-0.181	-0.102															0.141	
0.012	0.169	-0.484	-0.011	-0.114	-0.479	0.000	-0.364	-0.329	0.000	-0.566	-0.003	0.022	-0.459	0.238	0.076															0.138	
											0.003						Constantin I													0.165	
											-0.527						1157675767				and the second								10.02010100	0.019	
																														0.132	
											0.204									10000		100000							100000	0.199	
0.017	0.017 -0.143 -0.315 -0.079 0.049 0.015 0.111 0.315 0.399 0.146 -0.167 -0.093 -0.111 -0.282 -0.203 -0.073												-0.073						10.000									-0.238	aen de cher o		
	Re	lati	ve	pin	po	we	r er	ror	s D	YN	I3D	sp	3 (:	3M)				and the second											-0.070	
				•	•						cen		``		,	-0.138	-0.112	-0.176	-0.075	-0.098	-0.153	-0.156	-0.119	-0.117	-0.122	-0.222	-0.149	-0.121	-0.220	-0.105	-0.071
						12			· 1			-															_	_			

Relative pin power errors DYN3D sp3 (32M) vs. Serpent 2 in per cent

-0.098 -0.143 -0.264 -0.091 -0.031 -0.127 0.126 0.426 0.291 0.225 -0.079 -0.042 -0.170 -0.333 -0.260 -0.093

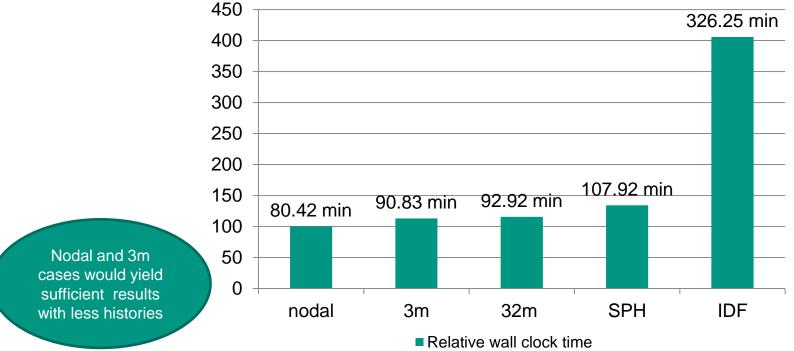
- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases

Pin level cross section generation


- General approach and pin level homogenization corrections
- Serpent 2 support in createXSlib
- Selected verification cases
- Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook

Thread affinity and proper page placement assured by batch system

Results for KIT HC3, dual socket Intel Xeon E5540 compute nodes with 24GB memory


2E+9 histories in 500 active cycles, 2g cross sections (0.625 eV boundary)

Performance impact of homogenization corrections

Measurements for 16x16-20 MOX FA using

for 16 MPI processes with 8 OpenMP threads each

- Pin power reconstruction
 - Using Serpent 2 for pin power reconstruction constant generation
 - Serpent 2 support in GenPMAXS
 - Selected verification cases
- Pin level cross section generation
 - General approach and pin level homogenization corrections
 - Serpent 2 support in createXSlib
 - Selected verification cases
 - Impact on homogenization corrections on Serpent 2 performance
- Conclusions and outlook

Conclusions and Outlook

- Group-wise form functions may now be obtained with Serpent 2
- Accuracy of PPR systematically limited
- All pin-level cross section generation approaches are supported by Serpent 2
- For high accuracy solutions, one should employ pin level homogenization corrections
- Homogenization corrections lead to a (large) penality in terms of computational resource, IDF: fourfold runtime increase compared to a nodal cross section generating model with same number of neutron histories
- Future work:
 - Kinetics parameters per pin cell
 - Performance optimization of IDF generation

