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Liquid-metal/steel interactions

 Solution of steel constituents
 Preferential (Ni, Cr) rather than general dissolution
 Surface recession and/or development of a near-surface 

depletion zone
 Penetration of the depletion zone by liquid metal
 Loss of load-bearing material cross-section
 Quantification by exposure to flowing or static liquid metal

 Degradation of mechanical properties
 Damage accumulation at the surface as a result of corrosion 
 Or arising from phenomena below the µm-scale:
 Processes affecting one- and two-dimensional defects 

(dislocations, grain boundaries, cracks)
 Especially apparent at low temperatures

 Quantification by tensile, slow-strain rate, creep, fracture-
toughness tests performed either in or after exposure to the 
liquid metal

On the µm-scale, 
accessible by light-optical 
microscopy (LOM), 
scanning-electron 
microscopy (SEM), 
energy-dispersive X-ray 
spectroscopy (EDX),      
X-ray diffraction (XRD) …  

Liquid-metal 
embrittlement (LME), 
liquid-metal induced 
embrittlement
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Impact of oxygen dissolved in liquid Pb or LBE on 
material loss caused by corrosion (qualitatively)

 Bold lines:
Average material loss (solution regime, 
transition region) or loss due to general 
corrosion (oxidation regime) 

 Continuous oxide layer on the steel 
surface results in spatial separation of 
steel and liquid metal – reduced solution 
rates or risk of LME – at the cost of a 
growing oxide scale

 Solution-dominated corrosion may still 
occur where oxide scale locally failed

 Adverse effect of oxygen expected
when solid oxides form away from the 
steel surface (unfavourable gradient of 
solubility) Goal of deliberate oxygen addition
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Effect of oxygen on the solution of steel elements

 Gradient of solubility
 May establish if dissolving metal Me forms 

stable solid oxides
 Solubility of Me then decreases with increasing cO

(following from the solubility product of the oxide)
 Unfavourable solubility gradient if cO decreases 

with increasing distance from the steel surface

Illustration of concentration profiles 
that are decisive for diffusion of Me 
in the liquid metal (qualitatively)



Institute for Applied Materials – Material Process Technology (IAM-WPT)
Corrosion Department

5 January 2014

Phenomena observed in flowing LBE on 9Cr or Type 316 steels 
at 450–550°C, 2 m/s and 10–6% dissolved oxygen

 Protective scaling
 Thin Cr- (Si-) rich oxide scale (thickness ~1 µm or less)
 Promoted by high Cr content, fine-grained structure, 

dispersed Y2O3 …
 Favourable situation with respect to minimum material loss, 

but generally not of long duration (locally)

450°C

550°C

 Accelerated oxidation
 Typical and, finally, the general corrosion 

process for 9Cr steel
 Locally observed for 

Type 316 at 550°C

 Solution-assisted corrosion 
 Type 316: Primarily selective leaching of Ni or Cr
 9Cr: Intermittent solution participates in accelerated 

oxidation processes or solution outweighs oxidation

Both at 550°C

550°C

Scale failure at 
high local cO (?) Scale failure at 

low local cO (?)
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Quantification of corrosion

 Goal of quantification
 Material loss, average of general corrosion and 

maximum of local corrosion
 Thickness of adherent (oxide) scale
 Overall change in dimensions, including the scale 
 Amount of metals transferred to the liquid metal

 Metallographic method (cylindrical specimens)
 Measurement of initial diameter in a 

laser micrometer with 0.1 µm resolution
 Diameter of unaffected material 

and thickness of corrosion scales 
determined in a microscope (LOM) 
at ×500 magnification, with 1 µm 
resolution

 Occurrence of different corrosion 
modes on opposing sides of the 
re-measured diameter is 
considered in the evaluation

 Verification of the method in 
MATTER Task 3.2
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Quantitative results from experiments in the CORRIDA loop:
T91 in LBE at 450–550°C, 2 m/s and 10–6% dissolved oxygen

 Accelerated oxidation

 Thickness of magnetite approximates the 
overall increase in specimen radius 

 Dissolved Fe from balancing the mass 
consumed and present in oxides

 Extrapolation of data naturally depends 
strongly on the type of rate law assumed 

 Solution-assisted corrosion
 Significantly increased 

material loss
 Comparatively small

database for kinetic
analysis

 Underlying corrosion 
mechanisms may differ for 
the particular data points
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Quantitative results from experiments in the CORRIDA loop:
Type 316 in LBE at 450–550°C, 2 m/s and 10–6% dissolved oxygen

 Accelerated oxidation
 Observed locally at 550°C
 In parts continuous scale 

after long exposure time
 Not observed at 450°C

 Solution-assisted corrosion
 Only few sites on investigated specimens 

may be affected
 Mostly selective leaching of Ni and Cr
 But also general dissolution of all steel 

elements at 450°C
 Incubation time decreases from around 

5000 h at 450°C to 1000 h at 550°C
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Long-term corrosion studies in flowing oxygen-containing LBE 
conducted in the CORRIDA loop at KIT/IAM-WPT

Temperature Flow velocity Nominal oxygen
concentration

Maximum 
exposure time Tested materials

550 (+5)°C 2 (±0.2) m/s 10-6 mass% ~ 20,000 h CSEF (T91, E911, EUROFER), ODS steels, 
316SS, surface alloyed steels (Al), ...

450 (+5)°C 2 (±0.2) m/s 10-6 mass% ~ 8000 h CSEF (T91, E911), pure Fe, 316SS, ...

In the framework of MATTER Task 3.2:

550°C (+5)°C 2 (±0.2) m/s 10-7 mass% ~ 2000 h

T91, E911, P92, 316SS, 15-15Ti (1.4970), 
…450°C (+5)°C 2 (±0.2) m/s 10-7 mass% ~ 8800 h

400°C 2 m/s 10-7 mass% Ongoing

 Empirical x for general and local corrosion
 As a function of T (400–550°C) and cO (10–6–10–7 mass%)
 For specific materials (T91, 316L, …)
 For material groups (9Cr, Type 316, …), if appropriate
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Creep-rupture testing in oxygen-containing static liquid metal
as performed at KIT/IAM-WPT

Tensile specimen

Laser micrometer
• Diameter (Res.: 0.1 µm)
• Gauge length (Res.: 0.1 mm)
• Necking, strain at rupture after the test

Quantitative microscopy
• Performed at ×500
• Resolution: 1 µm
• Diameter of unaffected steel
• Corrosion scale thickness

Pre-test 
characterization

Creep test

• In liquid metal with oxygen control
• In air as reference atmosphere
• At constant load
• Specimen elongation identified 

with the movement of the pull rod

Post-test 
measurements

Analysis of recorded 
creep curves
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Potential interactions of liquid-metal corrosion and creep

 Impact of corrosion on creep or stress rupture of steels
 General or local thinning of steel cross-section versus 

overall strengthening by a stiff corrosion scale
 Corrosion-induced vacancies, pores or surface damage 

(notches, pits, grooves …)
 Weakening or embrittlement due to liquid-metal/steel 

interactions at near-surface dislocations, grain 
boundaries, cracks …

 Impact of tensile stress or creep on steel corrosion
 Stress-enhanced re-distribution of near-surface vacancies 

in the material volume promoting solution in (or penetration 
of) liquid metal as well as steel oxidation
 Local failure of the corrosion scale (oxides) induced by 

unfavourable stress state or deformation of underlying steel 
relative to the scale

May be suppressed by 
any dense oxide scale 
on the surface

Not specific for corrosion 
in liquid metal
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Creep and stress rupture of T91 and P92 in static Pb at 
650°C and 10–6 mass% dissolved oxygen

 Secondary creep rate
 Creep rate in oxygen-containing Pb

within or at the higher edge of the 
scatter band observed in air

 Insignificant difference between 
exposure to Pb and air during creep test

T91, Pb
19,500 h

P92, Pb
13,090 h

Brittle failure!

P92, Pb
90 h

 Stress rupture
 In general, ductile failure
 No clear effect of the environment, 

except for:
 Slightly reduced strain at rupture 

of P92 in Pb (16–27% compared 
with 20–31% in air)

 Premature brittle failure of P92 in 
Pb at 75 MPa after tR = 13,090 h
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P92 in static Pb at 650°C and 10–6 mass% dissolved oxygen: 
Brittle failure at 75 MPa after 13,090 h

 Indications of thermal ageing
 Precipitated and coarsened Laves Phase

 Indications of an environmental effect
 Failure origin at the surface
 Surface cracks in the necking region
 Solidified Pb at oxide/steel interface 

(observed in some distance to the 
site of failure)

Oxide scale Failure origin

crack

crack

(Fe,Cr)3O4

(Fe,Cr)2(W,Mo)
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Creep tests performed in LBE

 In CRISLA (as part of MATTER Task 3.3)
 T91 in static LBE at 450°C, 10–7 mass% dissolved 

oxygen and 390 MPa
 Test has been running since June 2012
 Stress rupture life of more than 10,000 h under the 

stated conditions
 Continuation of testing with experiments at lower cO

 Tests in other laboratories
 T91 in static LBE at 500°C, no active oxygen control
 Time-to-rupture at 300–320 MPa varies from 

several hundreds down to less than 10 h
 Reduced creep strength in comparison with tests in air

(R. Hernández, M. Serrano, MATTER Task 3.3)

 T91 in flowing LBE at 550°C, cO = 10–6 mass%, v = 0.5 m/s, 140–220 MPa
 Increase of secondary creep rate by factor 50 in comparison to air
 Early transition from secondary to tertiary creep
 Surface cracks in the necking region and premature failure
 Liquid metal at oxide/steel interface (Jianu et al., J. Nucl. Mater., 2009)
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Accounting for effects of Pb or LBE in component design

 Wall thinning expected for design lifetime
 To be added to the minimum wall thickness resulting 

from thermo-mechanical analysis of the component
 For 9Cr and Type 316 steels: 
 Wall thinning is negligible for protective scaling in 

oxygen-containing Pb or LBE
 However, either accelerated oxidation or solution-

assisted corrosion where this scale fails
 Both general and local corrosion need to be 

considered when oxide scale integrity is at risk

 “Weakening” factor considering degraded 
mechanical properties  
 Fraction of maximum load allowable in the 

absence of environmental effects
 For creep of 9Cr steels: 
 Factor may approach unity for accelerated 

oxidation (or protective scaling)
 <<1 for intimate contact between liquid metal 

and steel, e.g., solution-assisted corrosion

Define operating parameters so that 
incubation of solution-assisted corrosion 
takes longer than the design lifetime? 
(max. T, min. cO …)


