

NURESAFE WP1.4 HIGHER-RESOLUTION VVER MSLB

Status of KIT Contributions to WP1.4

J. Jimenez, V. Sanchez

Presented by J. Jimenez

victor.sanchez@kit.edu or javier.jimenez@kit.edu

- Channel analysis with CTF
- Sub-channel analysis with CTF
- SUBCHANFLOW API for SALOME 6 Series
- Conclusions

Channel analyses with CTF

- Reviewed version of D14.22b Released: Full core CTF input model for VVER MSLB analysis
 - CTF input deck
 - SUBCHANFLOW input deck
 - Comparison of results at HZP and HFP
- A full-core CTF input model for VVER-1000 MSLB analysis has been developed and tested standalone.

Community R	EUROPEAN COMMISSION esearch EURATOM
	NUclear REactor SAFEty Simulation Platform Collaborative Project (Large – scale Integrating Project) Seventh Framework Programme EURATOM Contract Number: 323263 Start date: 01/01/2013 Duration: 36 Months
_	D14.22b - Full core CTF input model for VVER MSLB analysis
	Authors: J. Jimenez, V. Sanchez (KIT)
NURESAFE - D	14.22b – version 1 – Issued on 24/06/2013

CTF sub-channel modeling of the FA

- There are complex geometries to be modelled with MED structures for the geometries proposed by INRNE
 - Geometry model 1 has 726 sub-channels, 312 pins and 18 water tubes
 - Geometry model 2 has 660 sub-channels, 312 pins and 18 water tubes
- Open questions in the preparation of the sub-channel model for CTF that need to be clarified.
 - Which is the better aproach for the meshing in the periphery?

Those are not regular triangles, one need to use MED_POLYHEDRA

- Is the CTF C++ API able to handle such meshes?
- Is it possible to use the preprocessor?

DISCUSSION

Post-processing of SCF results within SALOME 5

 Post-processing of SCF results within SALOME 6 still need to be improved (CXX translation to MEDCoupling)

- D14.22b reviewed version released (to+5): Full core CTF input model for VVER MSLB analysis
 - A full-core CTF input model for VVER-1000 MSLB analysis has been developed and tested standalone.
 - Bug in material properties specification was found and solved.
- Further work in the subchannel analysis will be very difficult without knowing the capabilities of the CTF C++ API.
 - Hopefully it will be clarified in this meeting (Looking forward to SP1.1 presentations)

FUTURE WORK

- Further testing is on-going in the course of planned VVER core calculations.
- Next will follow coupled neutronics computations to this models.

THANKS FOR YOUR ATTENTION