

NURESAFE WP1.3 BWR ATWS WITH UNCERTAINTY QUANTIFICATION

Status of CTF input deck

J. Jimenez, Y. Périn

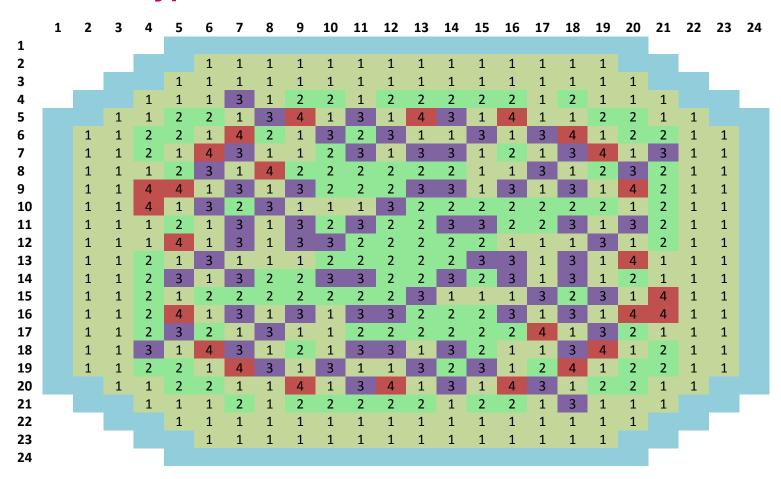
Presented by J. Jimenez

yann.perin@grs.de or javier.jimenez@kit.edu

Outline

- Remarks about NURESAFE CTF version
- D13.22 submitted: Description of the CTF input deck for BWR ATWS analysis (KIT & GRS)
- Conclusion & Outlook

NURESAFE CTF version


- Updated PSU Version of CTF received from GRS (20.11.2013)
- Non-regresion tests cases run and 8 out of 193 failed.

- CTF version assessment at KIT resulted in a small report documenting some errors and other issues (21.11.2013):
 - EMAIL exchange (PSU, ORNL, GRS and KIT) on the following days up to 26.11.2013
 - Up-to-day, there has been no more email/information exchange.

O2 Core modeling with CTF

- 444 channels: Every channel represents a FA
- There are 4 types of different fuel assemblies

Current model limitations

- The current model has the following limitations:
 - The bypass channel and the internal bundle water channel are not explicitly modelled.
 - Only the active part of the core is modelled. For the coupling with a neutronic core model, a bottom and top reflector part will be needed.
 - The axial power distribution is the same in all assemblies.
 - The 444 fuel assemblies are modelled in parallel (no flow between channels).
 - The flow area, wetted perimeter and pressure loss coefficients are taken from the specifications.
- The input deck has around 3900 lines

CTF INPUT DECK STRUCTURE

MAIN PROBLEM CONTROL DATA

- CARD GROUP 1: Selection of the Physical Models, Global Boundary Conditions, and Initial Conditions
- CARD GROUP 2: Channel Description
- CARD GROUP 3: Transverse Channel Connection Data (Gap definition)
- CARD GROUP 4: Vertical Channel Connection Data
- CARD GROUP 7: Local Pressure Loss Coefficient and Grid Spacer Data
- CARD GROUP 8: Rod and Unheated Conductor Data

CTF INPUT DECK STRUCTURE

MAIN PROBLEM CONTROL DATA

- CARD GROUP 9: Conductor Geometry Description
- CARD GROUP 10: Material Properties Tables
- CARD GROUP 11: Axial Power Distribution Tables, Radial Power Distribution, and Transient Forcing Functions
- CARD GROUP 12: Turbulent Mixing and Void Drift Data
- CARD GROUP 13: Boundary Condition Data
- CARD GROUP 14: Output Options
- CARD GROUP 15: Time Domain Data

CARD GROUP 1, 2 and 3

- The input deck developed is in SI units
- The solver choice for the system pressure matrix is Bi-CGSTAB.
- Global boundary conditions taken from the specifications.
- Regarding the mixing:
 - Single-phase mixing coefficient according to Rogers and Rosehart (1972)
 - Two-phase multiplier according to Beus (1970)
- The flow area and wetted parameter for each channel are provided. The data are taken directly from the distributed data
- There is no CARD GROUP 3, BWR fuel bundles are wrapped

CARD GROUP 4, 5 and 6

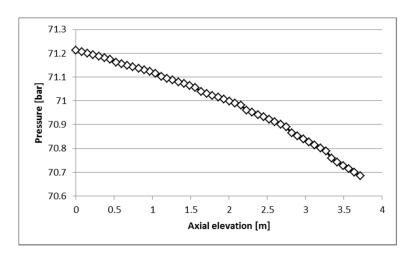
- Only one section was specified for the whole axial length of the active core (3.712 m).
- 50 equidistant axial nodes are used.
- Only the active part of the core is modelled.
- Fuel bundle type 4 contains partial fuel rods. Card group 5 and 6 allow for the modification of the flow area in selected channels (bundle type 4)

INPUT CARD GROUP 7, 8, 9 and 10

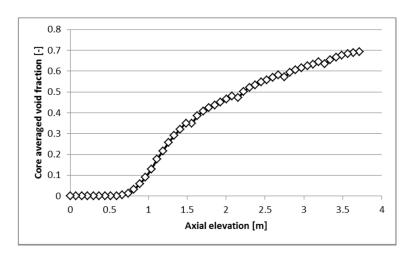
- Local Pressure Loss Coefficient and Grid Spacer Data
 - The data is taken directly from the distributed data
- There are 444 nuclear fuel rods representing each FA (nucl component CARD 9)
 - For the fuel rod modeling, a constant gap conductance of 9500 W/cm² is assumed
- There are 444 unheated structures representing the canister walls (wall component CARD 9)
- In CARD 10, default material properties for UO2 fuel and Zircalloy are used

CARD GROUP 11, 12 and 13

- The radial power distribution is taken from a steady-state coupled calculation performed with ATHLET-PARCS.
- The axial power distribution is the core averaged axial power distribution extracted from the same coupled calculation and thus is the same in all assemblies
- Turbulent mixing and void drift data is specified in this input card.
 - single-phase mixing coefficient is taken according to Rogers and Rosehart
 - two-phase multiplier is taken according to Beus
 - A value for THETM of 5.0 is suggested according to Sato (1992) for the ratio between maximum two-phase turbulent mixing coefficient (near the transition between slug and annular flow) and single-phase turbulent mixing coefficient (in single phase liquid)
- In total there are 888 (444*2) boundary conditions specified


General model assumptions

Model option	Where	Choice	
Rod friction factor correlation (IRFC)	CARD GROUP 1	2 (λ = 0.204 Re ^{-0.2})	
Entrainment and deposition model (EDMOD)	CARD GROUP 1	0	
Mixing and void drift model (IMIX)	CARD GROUP 1	2	
Iterative Solver for pressure equation (ISOL)	CARD GROUP 1	3 (Bi-CGSTAB)	
Number of simultaneous solution groups (NSIM)	CARD GROUP 4	1	
Rebalancing option for iterative control (IREBAL)	CARD GROUP 4	0	
Conduction in solid structures (NC)	CARD GROUP 8	1 (radial only)	
Flag for steady state calculation of rod temp. (NSTATE)	CARD GROUP 8	2	
Renoding flag for heat transfer solution for rod N (NRENODE)	CARD GROUP 8	0	
Fuel relocation flag (IRELF)	CARD GROUP 9	0	
Fuel degradation flag (ICONF)	CARD GROUP 9	0	
Flag for metal-water reaction, ZrO ₂ only (IMWR)	CARD GROUP 9	0	



CTF Results at HFP

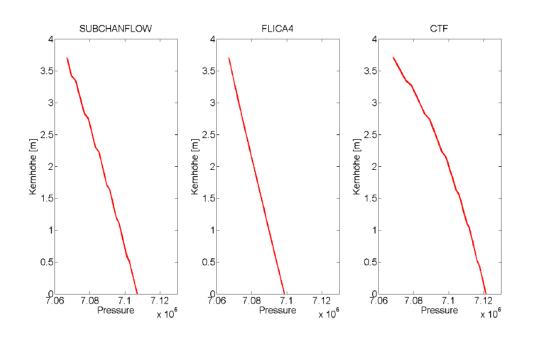
 CTF converge to steady state without major problems in a 3 seconds void transient

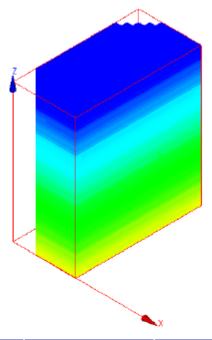
Core pressure versus height

Radial average void fraction versus height

 Good agreement between O2 reference values and predictions although bypass flow is not modeled.

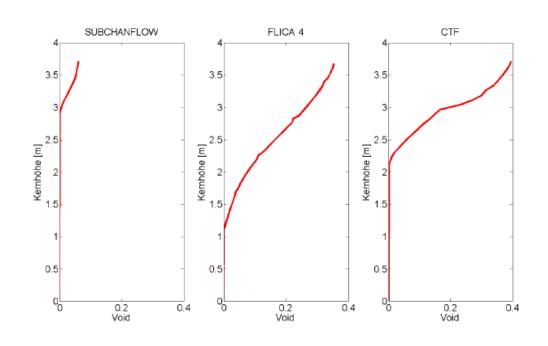
O2 Modeling with subchannel codes

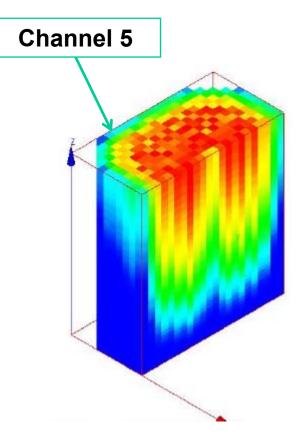

- Oskarshamn-2 Core has being modeled with COBRA-TF, SUBCHANFLOW and FLICA4
- Code versus measured data comparison


Parameter at HFP	Benchmark	SCF	FLICA4	CTF		
Thermal Power (MW)						
Core inlet Temperature (K)						
Core Inlet Mass Flow (kg/s)	NON DISCLOSUDE					
Core outlet Temperature (K)						
Average void fraction (-)	NON-DISCLOSURE AGREEMENT					
Void fraction at core outlet (-)						
Presure drop in the core (kPa)						
Average flow velocity in the core (m/s)						

Results: Pressure drop

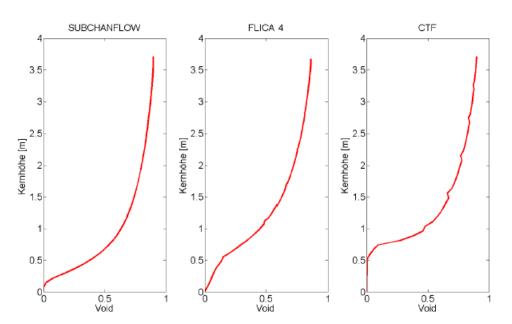
 3D Power distribution take from converge steady state TRACE/PARCS

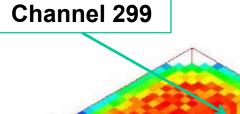




	Benchmark	SUBCHANFLOW	FLICA4	CTF
Average Pressure drop in the core (kPa)	Ref.	-1.9%	-12.8%	+16.3%

Results: Void fraction in channel 5





- Very different onset of boiling
- Effects of subcooled boiling are modeled differently

Results: Void fraction in channel 299

Similar vapor volume fraction at the core outlet

 The position of the spacers grids in FLICA and COBRA-TF can be seen clearly

Conclusions and Outlook

- COBRA-TF model for O2 core completed
 - Good agreement between O2 reference values and predictions,
 - FLICA4 and SUBCHANFLOW models developed as a backup solution for O2
- D13.22 Released on time (t0+12)
- Application to coupled simulations is foreseen in the next months.

THANKS FOR YOUR ATTENTION